CS7150 Deep Learning Final Project
Applying Deep Learning to the Numerai data science competition.
Jackson Neal
Rohit Barve
Quay Dragon
NOTE: GPU configuration is optional but recommended for compute intensive jobs.
- SSH to
login.discovery.neu.edu
- Request GPU partition
make req-gpu
- Load anaconda and cuda modules
module load anaconda3/2022.01
module load cuda/11.1
- Activate pytorch_env_training environment
source activate pytorch_env_training
make init
Load saved BASE model, load Numerai data, execute predictions. Predictions formatted for submission to Numerai and output to ./predictions.csv in project root.
# no GPU
make demo-base
# use GPU
make demo-base-gpu
Training walk through with EDA available in code_walkthrough.ipynb
- Modify single run hyperparameters in single.yaml
- Run trainer with one of:
# no GPU
make single
# use GPU
make single-gpu
- View Tensorboard logs
make tb-logs
NOTE: Executing sweep runs requires an api key
- Modify sweep run hyperparameters in sweep.yaml
- Run trainer with on of:
# no GPU
make sweep
# use GPU
make sweep-gpu
- View sweep results at https://wandb.ai/cs7150-jn
Load saved model configs and weights to execute predictions. File paths are relative to project root. Run predictions with one of:
# no GPU
make predict ckpt=path/to/.ckpt hparams=path/to/.yaml
# use GPU
make predict-gpu ckpt=path/to/.ckpt hparams=path/to/.yaml
NOTE: Submission requires api keys in local
.env
file
make submit model=(BASE|AEMLP|TMLP|CAE)