Code for the paper Schlör et al., A multi-modal representation of El Niño Southern Oscillation Diversity (2023)
Preprint: https://arxiv.org/abs/2307.11552
Low dimensional representation of SSTA fitted by a GMM:
The conditional probability,
Decadal variability:
- Create conda environment with packages specified in conda YAML-file
conda create -f latgmmenv.yml
- Activate environment
conda activate latgmmenv
- Run
pip install -e .
in the root directory to use this latgmm package - Use correof-package whereever you want in your environment by
import latgmm
Put your datafiles in the ./data
folder. The location of the files are:
└── reanalysis
├── 6-hourly
│ └── ERA5
│ ├── era5_u10_anom_HF_1940_2021_5N5S_130E80W_1deg.nc
│ └── era5_u10_anom_LF_1940_2021_5N5S_130E80W_1deg.nc
└── monthly
├── CERA-20C
│ ├── oceanvars_CERA20C_1x1.nc
│ └── sst_cera20c_1901-2009_r1x1.nc
├── COBE
│ └── sst_cobe2_month_1850-2019.nc
├── ERA5
│ ├── 2m_temperature_era5_monthly_sp_1940-2022_2.5x2.5.nc
│ ├── olr_era5_monthly_sp_1940-2022_2.5x2.5.nc
│ └── sea_surface_temperature_era5_monthly_sp_1940-2022_1.0x1.0.nc
├── ERSSTv5
│ └── sst_ersstv5_month_1854-present.nc
├── GODAS
│ ├── oceanvars_GODAS_1x1.nc
│ └── sst_godas_month_1980-present.nc
├── HadISST
│ └── sst_hadisst_month_1870-present.nc
├── ORAS5
│ ├── oceanvars_ORAS5_1x1.nc
│ ├── sea_surface_height_oras5_single_level_1958_2023_1x1.nc
│ └── sea_surface_temperature_oras5_single_level_1958_2023_1x1.nc
└── SODA
├── oceanvars_SODA_1x1.nc
└── sst_SODA_month_1980-2017.nc
You are welcome to contribute. Please keep in mind the following guidelines:
- Datasets are stored in the
/data
folder (for large datasets store a link to the original location in the data folder) - Outputs and plots are stored in
/output
- Unittests are placed in
/test
. Please make sure that all unit tests start withtest_...
- Please use relative paths in all scripts only
- Comment your code!!! Use the google docstring standard.
- Please use the following linters:
- pylint