YOLOv8
轻量化并且提升精度 !
-
Install
CUDA
followCUDA official website
.🚀 RECOMMENDED
CUDA
>= 11.4 -
Install
TensorRT
followTensorRT official website
.🚀 RECOMMENDED
TensorRT
>= 8.4 -
Install python requirements.
pip install -r requirements.txt
-
Install
ultralytics
package for ONNX export or TensorRT API building.pip install ultralytics
-
Prepare your own PyTorch weight such as
yolov8s.pt
.
NOTICE:
Please use the latest CUDA
and TensorRT
, so that you can achieve the fastest speed !
If you have to use a lower version of CUDA
and TensorRT
, please read the relevant issues carefully !
python train_distillation.py
1.准备好配置环境
2.准备好(训练好的)老师模型和(训练好的)学生模型
3.更改写在类Distillation_loss的 channels_s和channels_t,将通道数改成自己模型的通道数
csdn上有详细教程,链接:https://blog.csdn.net/W_extend/article/details/140902235?spm=1001.2014.3001.5502