Skip to content

[Scikit-learn] Temperature Prediction Application using Machine Learning Algorithms; Predicted daily temperature using multiple Linear Regression models & MLP with Scikit-learn, score = 0.85

Notifications You must be signed in to change notification settings

jasonx1011/temperature-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

temperature-prediction

[implemented by Scikit-learn]

Summary
Predicted daily temperature using multiple Linear Regression models & MLP with Scikit-learn, score = 0.85
Goal:
Using public local weather station data (San Jose) from NOAA (National Oceanic and
Atmospheric Administration) to predict temperature for the next 24 hours by using
different Machine Learning Algorithms

Raw Data:
NOAA weather data of San Jose weather station (2007.01.01 - 2016.12.31)

ML Algorithms (Scikit-learn):
linear_model.LinearRegression
linear_model.Lasso
linear_model.Ridge
neural_network.MLPRegressor

Plotting:
matplotlib

Envs:
Anaconda and Python 2.7

Packages:
conda create -n weather_prediction_py27 python=2.7
conda install numpy pandas matplotlib scikit-learn
conda install spyder

Run Steps:
% git clone https://github.com/jasonx1011/weather_prediction.git
% python weather_prediction.py
or using spyder to run weather_prediction.py (Recommended)

Sample Outputs:

  • Command Line Outputs:

  • Plotting Outputs:
    sample_plot_1
    sample_plot_2
    sample_plot_3

About

[Scikit-learn] Temperature Prediction Application using Machine Learning Algorithms; Predicted daily temperature using multiple Linear Regression models & MLP with Scikit-learn, score = 0.85

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages