Stanford Unsupervised Feature Learning and Deep Learning Tutorial
Python
Switch branches/tags
Nothing to show
Clone or download
Latest commit 8e4a672 Jun 8, 2014
Permalink
Failed to load latest commit information.
output
LICENSE License added May 20, 2014
README.md Minor spelling change Jun 7, 2014
cnn.py
cnn_exercise.py
display_network.py
gradient.py Code optimizations Jun 4, 2014
linear_decoder_exercise.py Convolution May 28, 2014
load_MNIST.py
load_images.py Minor changes May 5, 2014
pca_gen.py Linear Decoder with Auto-encoder May 22, 2014
sample_images.py PCA & Whitening May 9, 2014
softmax.py Removed debugging code Jun 7, 2014
softmax_exercise.py
sparse_autoencoder.py Code optimizations Jun 4, 2014
stacked_ae_exercise.py
stacked_autoencoder.py
stl_exercise.py Stacked Auto-encoder cost function May 15, 2014
train.py Code optimizations Jun 4, 2014

README.md

Stanford Unsupervised Feature Learning and Deep Learning Tutorial

Tutorial Website: http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

Sparse Autoencoder

Sparse Autoencoder vectorized implementation, learning/visualizing features on MNIST data

Preprocessing: PCA & Whitening

Implement PCA, PCA whitening & ZCA whitening

Softmax Regression

Classify MNIST digits via softmax regression (multivariate logistic regression)

Self-Taught Learning and Unsupervised Feature Learning

Classify MNIST digits via self-taught learning paradigm, i.e. learn features via sparse autoencoder using digits 5-9 as unlabelled examples and train softmax regression on digits 0-4 as labelled examples

Building Deep Networks for Classification (Stacked Sparse Autoencoder)

Stacked sparse autoencoder for MNIST digit classification

Linear Decoders with Auto encoders

Learn features on 8x8 patches of 96x96 STL-10 color images via linear decoder (sparse autoencoder with linear activation function in output layer)

Working with Large Images (Convolutional Neural Networks)

Classify 64x64 STL-10 images using features learnt via linear decoder (previous section) and convolutional neural networks

  • cnn.py: Convolution neural networks. Convolve & Pooling functions
  • cnn_exercise.py: Classify STL-10 images