Skip to content

jawadhaidar/Hybrid-Panoptic

Repository files navigation

Hybrid-Panoptic

PROJECT DESCRIPTION

In this project, we propose a simple Hybrid panoptic method designed to cover a large number of classes (2000+) without compromising on accuracy.

Cons of open-Vocab

Open-vocab panoptic segmentation techniques often face the challenge of significantly increasing the number of classes. While this approach offers greater flexibility, it tends to achieve lower precision on novel classes. Moreover, continually adding new classes to such models can result in a computational burden, as it requires retraining these massive models (with over 1000M parameters).

Cones of Closed-Vocab

On the other hand, Closed Vocab methods excel in achieving high accuracy across all annotated classes. However, they are inherently limited to the initially annotated classes. Expanding the scope of such models by adding new classes typically necessitates manual annotation, which can be labor-intensive and time-consuming.

Pros of Hybrid-Panoptic

Method Schematic

Results

result

ODISE

HOW TO INSTALL

conda create -n odise python=3.9
conda activate odise
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install git+https://@github.com/NVlabs/ODISE.git
pip install pillow==9.5.0
python -m pip uninstall numpy
python -m pip install numpy==1.23.1


Test ODISE

conda activate odise
cd ~/ODISE
python demo/demo.py --input demo/examples/coco.jpg --output demo/coco_pred.jpg 

ClosedInstanceSegmentation (CIS)

HOW TO INSTALL

conda create --name openmmlab python=3.8 -y
conda activate openmmlab
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
git clone https://github.com/open-mmlab/mmdetection.git
mim install mmdet
cd ~/mmdetection
#download base model
wget https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth

Test CIS

cd ~/mmdetection
mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .
#add this to a file and run
from mmdet.apis import init_detector, inference_detector
config_file = 'rtmdet_tiny_8xb32-300e_coco.py'
checkpoint_file = 'rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')

Heuristic

HOW TO INSTALL

git clone https://github.com/jawadhaidar/Hybrid-Panoptic.git

INFERENCE

command based

#download finetuned model
cd ~/HybridPan/models
wget --content-disposition "https://drive.usercontent.google.com/download?id=1HW-V50SboP0kEsTh6c3h3g8bGffjBifL&export=download&confirm=t&uuid=368ec624-1afc-4d8c-b6af-dc8e96b3f070"
cd ~/HybridPan
bash multi_runner.sh

docker based

TRAIN

preprare dataset

Configuration

train

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published