Skip to content

jeanpm/pof

Repository files navigation

Conceptual model for optimization problems

Challenges:

  • Clear and total separation between optimization problems (OP) and optimization methods (OM).
  • Optimization methods should be implemented using elementar neighborhood operations.
  • Such approach enable a fair comparison of different meta-heuristics.

Concepts:

  • The search space S of a combinatorial optimization problem is a subset of the power set of its components c in C.
  • Solutions are elements of S, which define states for each component c in C (present, absent, unknown)
    • A solution is complete if all the components in C have their state in: present or absent.
    • A solution is partial if any component in C has its state defined as unkown.
  • Components are problem-specific, it can be a knapsack item, a graph edge, etc.
  • Neighborhoods define rules of proximity between solutions according to their components. They also can change the components state of a solution. For a minimum spanning tree problem:
    • Prim's algorithm defines as neighbors of x solutions y such c is unknown in x but present in y
      • By adding c to x, c becomes present in x, at the same time other components might become absent (e.g. those which leads to infeasible solutions)
    • Kruskal's algorithm, on the other hand, defines other kind of neighboring solutions.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published