Scitree is a collection of state-of-the-art algorithms for Decision Forest model algorithms.
Basically this is a wrapper around the Yggdrasil Decision Forests C++ libraries.
precompiled files for architecture x only
dataset_train = # Dataset
dataset_predict = # Dataset
Scitree.Config.init()
|> Scitree.Config.label("class")
|> Scitree.Config.learner(:random_forest)
|> Scitree.Config.task(:classification)
|> Scitree.train(dataset_train)
|> Scitree.predict(dataset_predict)
- Python3 (Tested with version 3.8.10)
- NumPy installed for compiling Tensorflow
- Bazelisk (or Bazel 5.1.1)
- GCC >= 9.3.0
- build-essential (base-devel)
In order to use Scitree
, you will need Elixir installed. Then create an Elixir project via the mix build tool:
$ mix new my_app
Then you can add Scitree
as dependency in your mix.exs
. At the moment you will have to use a Git dependency while we work on our first release:
def deps do
[
{:scitree, "~> 0.1.0"}
]
end
Alternatively, inside a script or Livebook:
Mix.install([{:scitree, "~> 0.1.0"}])