title | author | output | ||||
---|---|---|---|---|---|---|
Applying a function over rows of a data frame |
Winston Chang |
|
Source for this document.
RPub for this document.
@dattali asked, "what's a safe way to iterate over rows of a data frame?" The example was to convert each row into a list and return a list of lists, indexed first by column, then by row.
A number of people gave suggestions on Twitter, which I've collected here. I've benchmarked these methods with data of various sizes; scroll down to see a plot of times.
library(purrr)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(tidyr)
# @dattali
# Using apply (only safe when all cols are same type)
f_apply <- function(df) {
apply(df, 1, function(row) as.list(row))
}
# @drob
# split + lapply
f_split_lapply <- function(df) {
df <- split(df, seq_len(nrow(df)))
lapply(df, function(row) as.list(row))
}
# @winston_chang
# lapply over row indices
f_lapply_row <- function(df) {
lapply(seq_len(nrow(df)), function(i) as.list(df[i,,drop=FALSE]))
}
# @winston_chang
# lapply + lapply: Treat data frame as list, and the slice out lists
f_lapply_lapply <- function(df) {
cols <- seq_len(length(df))
names(cols) <- names(df)
lapply(seq_len(nrow(df)), function(row) {
lapply(cols, function(col) {
df[[col]][[row]]
})
})
}
# @winston_chang
# purrr::by_row
# 2018-03-31 Jenny Bryan: by_row() no longer exists in purrr
# f_by_row <- function(df) {
# res <- by_row(df, function(row) as.list(row))
# res$.out
# }
# @JennyBryan
# purrr::pmap
f_pmap <- function(df) {
pmap(df, list)
}
# purrr::pmap, but coerce df to a list first
f_pmap_aslist <- function(df) {
pmap(as.list(df), list)
}
# @krlmlr
# dplyr::rowwise
f_rowwise <- function(df) {
df %>% rowwise %>% do(row = as.list(.))
}
# @JennyBryan
# purrr::transpose (only works for this specific task, i.e. one sub-list per row)
f_transpose <- function(df) {
transpose(df)
}
Benchmark each of them, using data sets with varying numbers of rows:
run_benchmark <- function(nrow) {
# Make some data
df <- data.frame(
x = rnorm(nrow),
y = runif(nrow),
z = runif(nrow)
)
res <- list(
apply = system.time(f_apply(df)),
split_lapply = system.time(f_split_lapply(df)),
lapply_row = system.time(f_lapply_row(df)),
lapply_lapply = system.time(f_lapply_lapply(df)),
#by_row = system.time(f_by_row(df)),
pmap = system.time(f_pmap(df)),
pmap_aslist = system.time(f_pmap_aslist(df)),
rowwise = system.time(f_rowwise(df)),
transpose = system.time(f_transpose(df))
)
# Get elapsed times
res <- lapply(res, `[[`, "elapsed")
# Add nrow to front
res <- c(nrow = nrow, res)
res
}
# Run the benchmarks for various size data
all_times <- lapply(1:5, function(n) {
run_benchmark(10^n)
})
# Convert to data frame
times <- lapply(all_times, as.data.frame)
times <- do.call(rbind, times)
knitr::kable(times)
nrow apply split_lapply lapply_row lapply_lapply pmap pmap_aslist rowwise transpose
1e+01 0.000 0.000 0.001 0.000 0.001 0.001 0.044 0.000 1e+02 0.002 0.005 0.005 0.005 0.002 0.002 0.054 0.002 1e+03 0.004 0.036 0.034 0.015 0.002 0.002 0.056 0.001 1e+04 0.033 0.422 0.339 0.163 0.017 0.016 0.504 0.002 1e+05 0.527 24.720 23.743 1.808 0.201 0.220 5.322 0.017
This plot shows the number of seconds needed to process n rows, for each method. Both the x and y use log scales, so each step along the x scale represents a 10x increase in number of rows, and each step along the y scale represents a 10x increase in time.
library(ggplot2)
library(scales)
library(forcats)
# Convert to long format
times_long <- gather(times, method, seconds, -nrow)
# Set order of methods, for plots
times_long$method <- fct_reorder2(
times_long$method,
x = times_long$nrow,
y = times_long$seconds
)
# Plot with log-log axes
ggplot(times_long, aes(x = nrow, y = seconds, colour = method)) +
geom_point() +
geom_line() +
annotation_logticks(sides = "trbl") +
theme_bw() +
scale_y_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x)),
minor_breaks = NULL) +
scale_x_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format(10^.x)),
minor_breaks = NULL)
#> Warning: Transformation introduced infinite values in continuous y-axis
#> Warning: Transformation introduced infinite values in continuous y-axis