Skip to content

jian-cui/turtle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Turtle Project

###Datafile: ######1. ctd_extract_good.csv (ctd_extract_TF.py):

  • TF, get good ctd data, If TF==True, good; If False, bad.

######2. ctd_good.csv (nearestIndexInMod.py):

  • TF, get good ctd data, If TF==True, good; If False, bad.
  • modNearestIndex, return the index of nearest point in model.
  • modDepthLayer, return whcih layer in model observation belongs to.

######3. ctdWithModTempByDepth.csv (ctdWithModTempByDepth.py):

  • TF, get good ctd data, If TF==True, good; If False, bad.
  • modNearestIndex, return the index of nearest point in model.
  • modDepthLayer, return whcih layer in model observation belongs to.
  • modTempByDepth, return the temp in model calculated by depth rather than layer.

###Module: ######1. turtleModule.py

  • mon_alpha2num Return num from name of month
  • np_datetime Return a datetime from ctd observation "END_DATE"
  • bottom_value Return the bottom temp from obs "TEMP_VALS" str
  • index_by_depth Return a list with 2 part divided by 'depth'
  • str2list Convert a str to list
  • str2ndlist Convert a str to multidimensional arrays(especially for new column added to datafile)
  • angle_conversion
  • dist Calculate the dist from longitude and latitude
  • closet_num Return the index of the closet number in list
  • draw_basemap Draw basemap
  • intersection Calculate point of intersection of 2 lines

######2. watertempModule.py Note: Using module named jata

  • This is a module of classes we might use.

###Code: ######1. ctd_extract_TF.py

  • Create new data file "ctd_extract_good.csv" with new column TF.(For every ctd position, if it has at least one gps position within 3km and 3h, it's good.)

######2. nearestIndexInMod.py

  • Create new data file "ctd_good.csv" with new column TF, modNearestIndex, modDepthLayer

######3. ctdWithModTempByDepth.py

  • Create new data file "ctdWithModTempByDepth.csv" with new column TF, modNearestIndex, modDepthLayer, modTempByDepth

######4. dataMap.py:

  • Draw data map of "raw_ctd", "good_ctd", "raw_gps", "good_gps" and so on.

######5. errorMapLayer.py

  • errorMapLayer4In1.png Plot 4 maps in 1 fig to show which layer has the most errors
  • errorMapLayerBar.png Error bar
  • errorMapLayerDepthBar.png Error depth bar

######6. errorMapDepth.py

  • errorMapDepth4In1.png Plot 4 maps in 1 fig to show which depth has the most errors
  • errorMapDepthErrorBar.png Error bar
  • errorMapDepthRatioOfError.png

######7. obsVSmodel_bottomtemp.py

  • Draw the correlation of the deepest observation(we assume it's the bottom of ocean) and appropriate model data.

######8. obsVSmodel_deepestbottom.py

  • If the deepest observation depth is “>50m”(or “<50m”, or “all”), draw the correlation of this observation and appropriate model data.

######9. obsVSmodel_deepshallow.py

  • Draw the correlation of observation and model between deep and shallow(50m)

######10. obsVSmodel_shore.py

  • Draw the correlation of observation and model between onshore and offshore(50m)

######11. deepestDepth.py

  • Return ratio of the deepest depth

######12. timeSeries.py

  • Draw temp change of one specific turtle data and model data.

######13. gridOfError.py

  • Divide the whole area into drifferent girds, and plot the number of observation and error in each grid.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages