This is a PyTorch implementation of PULDA, which is an extension of Dist-PU.
- python>=3.7
- torch>=1.8.1
- torchvision>=0.9.1
- numpy>=1.19.2
- sklearn>=0.24.1
- Download CIFAR-10 python version (163MB) from http://www.cs.utoronto.ca/~kriz/cifar.html to your machine.
- Decompress the downloaded file cifar-10-python.tar.gz from the first step.
- Usually the second step would result in a new directory like '*/cifar-10-batches-py/' with files in it including:
- data_batch_[1-5]
- test_batch
- batches.meta
- readme.html
python train.py --device GPUID --datapath DATAPATH
If you use the code of this repository, please cite our paper:
@ARTICLE{jiang22maxmatch,
author={Yangbangyan Jiang and
Qianqian Xu and
Yunrui Zhao and
Zhiyong Yang and
Peisong Wen and
Xiaochun Cao and
Qingming Huang},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Positive-Unlabeled Learning with Label Distribution Alignment},
volume={45},
number={12},
pages={15345--15363},
year={2023}
}