The source code and Appendix of our work "Charge Prediction by Constitutive Elements Matching of Crimes", IJCAI 2022. https://www.ijcai.org/proceedings/2022/627
The program has been tested in the following environment:
- Ubuntu 18.04
- Python 3.7.6
- Pytorch 1.7.1
- thulac 0.2.1
- scikit-learn 0.22.1
- numpy 1.18.1
|-- ckpt/ // obtained checkpoints from training
|-- data // folder to store data
|-- CEs/ // raw data of constitutive elements
|-- criminal/ // raw data of criminal dataset
|-- cail/ // raw data of cail dataset
|-- processed_data/ // processed data, represented by wordID
|-- README.md
|-- logs/ // folder to store results and training logs
|-- model/ // code for training and testing
|-- config.py // hyperparameters
|-- customer_layers.py // code for aggregation, PFI, and action
|-- encoder.py // code for encoder
|-- main.py // train and test
|-- model.py // code for environment, agent, and predictor
|-- util.py //
|-- utils //
|-- preprocess_data.py // preprocessing
|-- read_save_data.py // processing data and saving them
First, download the processed data from processed data example - Baidu or processed data example - Google and unzip them to ./data/processed_data/.
For training and testing:
cd model
python main.py --dataset criminal --nclass 149
BibTex:
@inproceedings{ijcai2022-627,
title = {Charge Prediction by Constitutive Elements Matching of Crimes},
author = {Zhao, Jie and Guan, Ziyu and Xu, Cai and Zhao, Wei and Chen, Enze},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
editor = {Lud De Raedt},
pages = {4517--4523},
year = {2022},
month = {7},
note = {Main Track}
doi = {10.24963/ijcai.2022/627},
url = {https://doi.org/10.24963/ijcai.2022/627},
}