-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpublic_tests.py
81 lines (58 loc) · 3.67 KB
/
public_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import random
def select_threshold_test(target):
p_val = np.array([i / 100 for i in range(30)])
y_val = np.array([1] * 5 + [0] * 25)
best_epsilon, best_F1 = target(y_val, p_val)
assert np.isclose(best_epsilon, 0.04, atol=0.3 / 1000), f"Wrong best_epsilon. Expected: {0.04} got: {best_epsilon}"
assert best_F1 == 1, f"Wrong best_F1. Expected: 1 got: {best_F1}"
y_val = np.array([1] * 5 + [0] * 25)
y_val[2] = 0 # Introduce noise
best_epsilon, best_F1 = target(y_val, p_val)
assert np.isclose(best_epsilon, 0.04, atol=0.3 / 1000), f"Wrong best_epsilon. Expected: {0.04} got: {best_epsilon}"
assert np.isclose(best_F1, 0.8888888), f"Wrong best_F1. Expected: 0.8888888 got: {best_F1}"
p_val = np.array([i / 1000 for i in range(50)])
y_val = np.array([1] * 8 + [0] * 42)
y_val[5] = 0
index = [*range(50)]
random.shuffle(index)
p_val = p_val[index]
y_val = y_val[index]
best_epsilon, best_F1 = target(y_val, p_val)
assert np.isclose(best_epsilon, 0.007, atol=0.05 / 1000), f"Wrong best_epsilon. Expected: {0.0070070} got: {best_epsilon}"
assert np.isclose(best_F1, 0.933333333), f"Wrong best_F1. Expected: 0.933333333 got: {best_F1}"
print("\033[92mAll tests passed!")
def estimate_gaussian_test(target):
np.random.seed(273)
X = np.array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]).T
mu, var = target(X)
assert type(mu) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(mu)}"
assert type(var) == np.ndarray, f"Wrong type for var. Expected: {np.ndarray} got: {type(var)}"
assert mu.shape == (X.shape[1],), f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {mu.shape}"
assert type(var) == np.ndarray, f"Wrong shape for var. Expected: {(X.shape[1],)} got: {var.shape}"
assert np.allclose(mu, [1., 2., 3.]), f"Wrong value for mu. Expected: {[1, 2, 3]} got: {mu}"
assert np.allclose(var, [0., 0., 0.]), f"Wrong value for var. Expected: {[0, 0, 0]} got: {var}"
X = np.array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]]).T
mu, var = target(X)
assert type(mu) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(mu)}"
assert type(var) == np.ndarray, f"Wrong type for var. Expected: {np.ndarray} got: {type(var)}"
assert mu.shape == (X.shape[1],), f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {mu.shape}"
assert type(var) == np.ndarray, f"Wrong shape for var. Expected: {(X.shape[1],)} got: {var.shape}"
assert np.allclose(mu, [2., 4., 6.]), f"Wrong value for mu. Expected: {[2., 4., 6.]} got: {mu}"
assert np.allclose(var, [2. / 3, 8. / 3., 18. / 3.]), f"Wrong value for var. Expected: {[2. / 3, 8. / 3., 18. / 3.]} got: {var}"
m = 500
X = np.array([np.random.normal(0, 1, m),
np.random.normal(1, 2, m),
np.random.normal(3, 1.5, m)]).T
mu, var = target(X)
assert type(mu) == np.ndarray, f"Wrong type for mu. Expected: {np.ndarray} got: {type(mu)}"
assert type(var) == np.ndarray, f"Wrong type for var. Expected: {np.ndarray} got: {type(var)}"
assert mu.shape == (X.shape[1],), f"Wrong shape for mu. Expected: {(X.shape[1],)} got: {mu.shape}"
assert type(var) == np.ndarray, f"Wrong shape for var. Expected: {(X.shape[1],)} got: {var.shape}"
assert np.allclose(mu, [0., 1., 3.], atol=0.2), f"Wrong value for mu. Expected: {[0, 1, 3]} got: {mu}"
assert np.allclose(var, np.square([1., 2., 1.5]), atol=0.2), f"Wrong value for var. Expected: {np.square([1., 2., 1.5])} got: {var}"
print("\033[92mAll tests passed!")