-
Notifications
You must be signed in to change notification settings - Fork 6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Error occurring while running the code #1
Comments
Please note the original code is based on keras 1.1.0 and theano 0.82. If you use tensorflow, I cannot guarantee if it works or not |
Thank you for your reply but the thing is that the same error is coming again even the keras with back end theano /usr/bin/python2.7 /home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py Layer (type) Output Shape Param # Connected toconvolution2d_1 (Convolution2D) (None, 122, 122, 32) 4736 convolution2d_input_1[0][0] activation_1 (Activation) (None, 122, 122, 32) 0 convolution2d_1[0][0] maxpooling2d_1 (MaxPooling2D) (None, 61, 61, 32) 0 activation_1[0][0] convolution2d_2 (Convolution2D) (None, 57, 57, 64) 51264 maxpooling2d_1[0][0] activation_2 (Activation) (None, 57, 57, 64) 0 convolution2d_2[0][0] maxpooling2d_2 (MaxPooling2D) (None, 28, 28, 64) 0 activation_2[0][0] convolution2d_3 (Convolution2D) (None, 26, 26, 128) 73856 maxpooling2d_2[0][0] activation_3 (Activation) (None, 26, 26, 128) 0 convolution2d_3[0][0] maxpooling2d_3 (MaxPooling2D) (None, 13, 13, 128) 0 activation_3[0][0] dropout_1 (Dropout) (None, 13, 13, 128) 0 maxpooling2d_3[0][0] flatten_1 (Flatten) (None, 21632) 0 dropout_1[0][0] dense_1 (Dense) (None, 128) 2769024 flatten_1[0][0] activation_4 (Activation) (None, 128) 0 dense_1[0][0] dropout_2 (Dropout) (None, 128) 0 activation_4[0][0] dense_2 (Dense) (None, 10) 1290 dropout_2[0][0] activation_5 (Activation) (None, 10) 0 dense_2[0][0]Total params: 2900170 None Process finished with exit code 1 |
hi, Thank you. |
I can't understand why the model is not able to save in the given path . |
I am on traveling. I will check the code for you later What version of keras you are using? If you are using tensorflow, make sure to make some modifications to the original code to be compatible with it |
i am using keras 1.1.1 and theano 0.8.2 versions .I have modified the in some lines and comment the code of Prepare data sets as we i have the complete data and the train and test data also. the code i have do some modifications in your code is below. -- coding: utf-8 --""" Edit history: @author: Yuzhen Lu from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img '''datagen = ImageDataGenerator( ############################################################################### Prepare data sets###############################################################################
rootFolder = 'rootFolder' #add the image directory #Please start from here!!''' Build a CNN model############################################################################### model = Sequential() #################################### Callback Schedule################################### ############################################################################### Data Expansion or Augmentation############################################################################### trainDir = './Train' ############################################################################### Fit, Evaluate and Save Model############################################################################### #Fit the model #evaluate the model #save model #plot acc and loss vs epochs ############################################################################### 100 epochs:200 epoches: acc = 0.8724; val_acc = 0.89212400 epoches:600 epochs:############################################################################### load the modelnot necessary the best at the end of trainingfrom keras.models import load_model ######################## Check-pointed model####################### #Confusion matrix on the test images yTrue = test_generator.classes from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import accuracy_score def numToLabels(y,cat): #Alternatively: pd.crosstab ############################################################################### Miscellaneous############################################################################### Expanded image datafor i in range(0, 9): ####################################################### Images with correct or wroning predicted Labels####################################################### #show some misclassified images #show some misclassified images ######################################## Rotated, shifted, sheared Images######################################## plot raw imagesfor i in range(0, 9): #image distortion by ImageDataGenerator #evaluate execution efficiency |
Hi ,can you guide me. |
can you please do the favour for me,as I am not getting the model. |
Hi
How are you , How you doing?
As we discussed about the code of food classification error (i.e about the
model not saving in the given path or default path).
Please check the code for me.
Thank you ,
Vikash
…On Thu, Aug 10, 2017 at 5:48 PM, jingweimo ***@***.***> wrote:
I am on traveling. I will check the code for you later
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub
<#1 (comment)>,
or mute the thread
<https://github.com/notifications/unsubscribe-auth/AdLFOty7GO7nMVYQM-4SBQAtl9bk9QH5ks5sWvUvgaJpZM4OoErJ>
.
|
/home/ashok/anaconda3/bin/python /home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py
Using TensorFlow backend.
Found 4654 images belonging to 10 classes.
Found 1168 images belonging to 10 classes.
/home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py:121: UserWarning: Update your
Conv2D
call to the Keras 2 API:Conv2D(32, (7, 7), input_shape=(128, 128,...)
model.add(Convolution2D(32, 7, 7, input_shape=(128, 128, 3)))
/home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py:124: UserWarning: Update your
Conv2D
call to the Keras 2 API:Conv2D(64, (5, 5))
model.add(Convolution2D(64, 5, 5))
/home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py:127: UserWarning: Update your
Conv2D
call to the Keras 2 API:Conv2D(128, (3, 3))
model.add(Convolution2D(128, 3, 3))
Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (None, 122, 122, 32) 4736
activation_1 (Activation) (None, 122, 122, 32) 0
max_pooling2d_1 (MaxPooling2 (None, 61, 61, 32) 0
conv2d_2 (Conv2D) (None, 57, 57, 64) 51264
activation_2 (Activation) (None, 57, 57, 64) 0
max_pooling2d_2 (MaxPooling2 (None, 28, 28, 64) 0
conv2d_3 (Conv2D) (None, 26, 26, 128) 73856
activation_3 (Activation) (None, 26, 26, 128) 0
max_pooling2d_3 (MaxPooling2 (None, 13, 13, 128) 0
dropout_1 (Dropout) (None, 13, 13, 128) 0
flatten_1 (Flatten) (None, 21632) 0
dense_1 (Dense) (None, 128) 2769024
activation_4 (Activation) (None, 128) 0
dropout_2 (Dropout) (None, 128) 0
dense_2 (Dense) (None, 10) 1290
activation_5 (Activation) (None, 10) 0
Total params: 2,900,170.0
Trainable params: 2,900,170.0
Non-trainable params: 0.0
None
/home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py:188: UserWarning: Update your
fit_generator
call to the Keras 2 API:fit_generator(<keras.pre..., verbose=1, validation_data=<keras.pre..., callbacks=[<keras.ca..., steps_per_epoch=145, epochs=100, validation_steps=1168)
callbacks = [earlystopper, lrate, checkpoint, hist])
Epoch 1/100
2017-07-31 10:22:34.909867: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-31 10:22:34.909906: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-31 10:22:34.909917: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-07-31 10:22:34.909925: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-31 10:22:34.909933: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
1/145 [..............................] - ETA: 858s - loss: 2.3407 - acc: 0.0625
2/145 [..............................] - ETA: 686s - loss: 2.3314 - acc: 0.1094
3/145 [..............................] - ETA: 619s - loss: 2.3092 - acc: 0.1250
4/145 [..............................] - ETA: 583s - loss: 2.3028 - acc: 0.1562
5/145 [>.............................] - ETA: 560s - loss: 2.2906 - acc: 0.1875
6/145 [>.............................] - ETA: 544s - loss: 2.2735 - acc: 0.2031
7/145 [>.............................] - ETA: 532s - loss: 2.2548 - acc: 0.2098
8/145 [>.............................] - ETA: 521s - loss: 2.2769 - acc: 0.2070
9/145 [>.............................] - ETA: 512s - loss: 2.2668 - acc: 0.2188
10/145 [=>............................] - ETA: 503s - loss: 2.2576 - acc: 0.2188
11/145 [=>............................] - ETA: 496s - loss: 2.2542 - acc: 0.2131
12/145 [=>............................] - ETA: 489s - loss: 2.2457 - acc: 0.2135
13/145 [=>............................] - ETA: 483s - loss: 2.2414 - acc: 0.2163
14/145 [=>............................] - ETA: 477s - loss: 2.2427 - acc: 0.2143
15/145 [==>...........................] - ETA: 472s - loss: 2.2332 - acc: 0.2146
16/145 [==>...........................] - ETA: 466s - loss: 2.2248 - acc: 0.2148
17/145 [==>...........................] - ETA: 461s - loss: 2.2325 - acc: 0.2151
18/145 [==>...........................] - ETA: 456s - loss: 2.2320 - acc: 0.2135
19/145 [==>...........................] - ETA: 452s - loss: 2.2321 - acc: 0.2171
20/145 [===>..........................] - ETA: 447s - loss: 2.2338 - acc: 0.2156
21/145 [===>..........................] - ETA: 444s - loss: 2.2291 - acc: 0.2158
22/145 [===>..........................] - ETA: 440s - loss: 2.2230 - acc: 0.2159
23/145 [===>..........................] - ETA: 435s - loss: 2.2234 - acc: 0.2160
24/145 [===>..........................] - ETA: 431s - loss: 2.2170 - acc: 0.2201
25/145 [====>.........................] - ETA: 427s - loss: 2.2212 - acc: 0.2150
26/145 [====>.........................] - ETA: 423s - loss: 2.2185 - acc: 0.2188
27/145 [====>.........................] - ETA: 419s - loss: 2.2147 - acc: 0.2199
28/145 [====>.........................] - ETA: 417s - loss: 2.2144 - acc: 0.2176
29/145 [=====>........................] - ETA: 415s - loss: 2.2071 - acc: 0.2166
30/145 [=====>........................] - ETA: 412s - loss: 2.1974 - acc: 0.2177
31/145 [=====>........................] - ETA: 409s - loss: 2.1981 - acc: 0.2147
32/145 [=====>........................] - ETA: 406s - loss: 2.1949 - acc: 0.2148
33/145 [=====>........................] - ETA: 403s - loss: 2.1962 - acc: 0.2140
34/145 [======>.......................] - ETA: 399s - loss: 2.1949 - acc: 0.2142
35/145 [======>.......................] - ETA: 397s - loss: 2.1944 - acc: 0.2134
36/145 [======>.......................] - ETA: 394s - loss: 2.1894 - acc: 0.2153
37/145 [======>.......................] - ETA: 392s - loss: 2.1966 - acc: 0.2162
38/145 [======>.......................] - ETA: 391s - loss: 2.1942 - acc: 0.2171
39/145 [=======>......................] - ETA: 387s - loss: 2.1928 - acc: 0.2163
40/145 [=======>......................] - ETA: 384s - loss: 2.1878 - acc: 0.2180
41/145 [=======>......................] - ETA: 380s - loss: 2.1854 - acc: 0.2203
42/145 [=======>......................] - ETA: 377s - loss: 2.1826 - acc: 0.2202
43/145 [=======>......................] - ETA: 375s - loss: 2.1807 - acc: 0.2195
44/145 [========>.....................] - ETA: 373s - loss: 2.1782 - acc: 0.2202
45/145 [========>.....................] - ETA: 370s - loss: 2.1766 - acc: 0.2222
46/145 [========>.....................] - ETA: 367s - loss: 2.1713 - acc: 0.2262
47/145 [========>.....................] - ETA: 365s - loss: 2.1703 - acc: 0.2267
48/145 [========>.....................] - ETA: 362s - loss: 2.1696 - acc: 0.2259
49/145 [=========>....................] - ETA: 358s - loss: 2.1673 - acc: 0.2283
50/145 [=========>....................] - ETA: 354s - loss: 2.1631 - acc: 0.2281
51/145 [=========>....................] - ETA: 351s - loss: 2.1585 - acc: 0.2273
52/145 [=========>....................] - ETA: 347s - loss: 2.1520 - acc: 0.2302
53/145 [=========>....................] - ETA: 343s - loss: 2.1488 - acc: 0.2300
54/145 [==========>...................] - ETA: 339s - loss: 2.1460 - acc: 0.2309
55/145 [==========>...................] - ETA: 334s - loss: 2.1435 - acc: 0.2307
56/145 [==========>...................] - ETA: 330s - loss: 2.1406 - acc: 0.2321
57/145 [==========>...................] - ETA: 326s - loss: 2.1392 - acc: 0.2319
58/145 [===========>..................] - ETA: 322s - loss: 2.1359 - acc: 0.2322
59/145 [===========>..................] - ETA: 318s - loss: 2.1303 - acc: 0.2336
60/145 [===========>..................] - ETA: 314s - loss: 2.1275 - acc: 0.2344
61/145 [===========>..................] - ETA: 310s - loss: 2.1252 - acc: 0.2346
62/145 [===========>..................] - ETA: 306s - loss: 2.1219 - acc: 0.2364
63/145 [============>.................] - ETA: 302s - loss: 2.1173 - acc: 0.2376
64/145 [============>.................] - ETA: 298s - loss: 2.1150 - acc: 0.2388
65/145 [============>.................] - ETA: 294s - loss: 2.1105 - acc: 0.2413
66/145 [============>.................] - ETA: 290s - loss: 2.1109 - acc: 0.2401
67/145 [============>.................] - ETA: 286s - loss: 2.1071 - acc: 0.2416
68/145 [=============>................] - ETA: 282s - loss: 2.1023 - acc: 0.2422
69/145 [=============>................] - ETA: 278s - loss: 2.0987 - acc: 0.2423
70/145 [=============>................] - ETA: 274s - loss: 2.1017 - acc: 0.2429
71/145 [=============>................] - ETA: 270s - loss: 2.1047 - acc: 0.2408
72/145 [=============>................] - ETA: 266s - loss: 2.1044 - acc: 0.2413
73/145 [==============>...............] - ETA: 262s - loss: 2.1038 - acc: 0.2423
74/145 [==============>...............] - ETA: 259s - loss: 2.1027 - acc: 0.2428
75/145 [==============>...............] - ETA: 255s - loss: 2.1017 - acc: 0.2433
76/145 [==============>...............] - ETA: 251s - loss: 2.1014 - acc: 0.2426
77/145 [==============>...............] - ETA: 247s - loss: 2.0975 - acc: 0.2447
78/145 [===============>..............] - ETA: 243s - loss: 2.0960 - acc: 0.2452
79/145 [===============>..............] - ETA: 239s - loss: 2.0941 - acc: 0.2460
80/145 [===============>..............] - ETA: 235s - loss: 2.0937 - acc: 0.2465
81/145 [===============>..............] - ETA: 232s - loss: 2.0931 - acc: 0.2450
82/145 [===============>..............] - ETA: 228s - loss: 2.0927 - acc: 0.2454
83/145 [================>.............] - ETA: 224s - loss: 2.0919 - acc: 0.2451
84/145 [================>.............] - ETA: 220s - loss: 2.0921 - acc: 0.2463
85/145 [================>.............] - ETA: 217s - loss: 2.0889 - acc: 0.2467
86/145 [================>.............] - ETA: 213s - loss: 2.0857 - acc: 0.2485
87/145 [=================>............] - ETA: 209s - loss: 2.0847 - acc: 0.2486
88/145 [=================>............] - ETA: 205s - loss: 2.0823 - acc: 0.2493
89/145 [=================>............] - ETA: 202s - loss: 2.0827 - acc: 0.2489
90/145 [=================>............] - ETA: 198s - loss: 2.0819 - acc: 0.2490
91/145 [=================>............] - ETA: 194s - loss: 2.0819 - acc: 0.2483
92/145 [==================>...........] - ETA: 190s - loss: 2.0781 - acc: 0.2486
93/145 [==================>...........] - ETA: 187s - loss: 2.0758 - acc: 0.2487
94/145 [==================>...........] - ETA: 183s - loss: 2.0728 - acc: 0.2500
95/145 [==================>...........] - ETA: 179s - loss: 2.0721 - acc: 0.2510
96/145 [==================>...........] - ETA: 176s - loss: 2.0676 - acc: 0.2523
97/145 [===================>..........] - ETA: 172s - loss: 2.0625 - acc: 0.2545
98/145 [===================>..........] - ETA: 168s - loss: 2.0613 - acc: 0.2554
99/145 [===================>..........] - ETA: 165s - loss: 2.0572 - acc: 0.2563
100/145 [===================>..........] - ETA: 161s - loss: 2.0519 - acc: 0.2578
101/145 [===================>..........] - ETA: 157s - loss: 2.0457 - acc: 0.2605
102/145 [====================>.........] - ETA: 154s - loss: 2.0494 - acc: 0.2607
103/145 [====================>.........] - ETA: 150s - loss: 2.0489 - acc: 0.2615
104/145 [====================>.........] - ETA: 146s - loss: 2.0451 - acc: 0.2632
105/145 [====================>.........] - ETA: 143s - loss: 2.0438 - acc: 0.2640
106/145 [====================>.........] - ETA: 139s - loss: 2.0407 - acc: 0.2647
107/145 [=====================>........] - ETA: 135s - loss: 2.0384 - acc: 0.2658
108/145 [=====================>........] - ETA: 132s - loss: 2.0368 - acc: 0.2674
109/145 [=====================>........] - ETA: 128s - loss: 2.0336 - acc: 0.2683
110/145 [=====================>........] - ETA: 125s - loss: 2.0334 - acc: 0.2693
111/145 [=====================>........] - ETA: 121s - loss: 2.0322 - acc: 0.2706
112/145 [======================>.......] - ETA: 117s - loss: 2.0315 - acc: 0.2712
113/145 [======================>.......] - ETA: 114s - loss: 2.0290 - acc: 0.2721
114/145 [======================>.......] - ETA: 110s - loss: 2.0298 - acc: 0.2728
115/145 [======================>.......] - ETA: 106s - loss: 2.0299 - acc: 0.2717
116/145 [=======================>......] - ETA: 103s - loss: 2.0273 - acc: 0.2724
117/145 [=======================>......] - ETA: 99s - loss: 2.0264 - acc: 0.2727
118/145 [=======================>......] - ETA: 96s - loss: 2.0261 - acc: 0.2728
119/145 [=======================>......] - ETA: 92s - loss: 2.0264 - acc: 0.2731
120/145 [=======================>......] - ETA: 88s - loss: 2.0255 - acc: 0.2732
121/145 [========================>.....] - ETA: 85s - loss: 2.0238 - acc: 0.2740
122/145 [========================>.....] - ETA: 81s - loss: 2.0202 - acc: 0.2759
123/145 [========================>.....] - ETA: 78s - loss: 2.0176 - acc: 0.2764
124/145 [========================>.....] - ETA: 74s - loss: 2.0171 - acc: 0.2760
125/145 [========================>.....] - ETA: 71s - loss: 2.0151 - acc: 0.2762
126/145 [=========================>....] - ETA: 67s - loss: 2.0134 - acc: 0.2773
127/145 [=========================>....] - ETA: 63s - loss: 2.0111 - acc: 0.2785
128/145 [=========================>....] - ETA: 60s - loss: 2.0086 - acc: 0.2791
129/145 [=========================>....] - ETA: 56s - loss: 2.0091 - acc: 0.2791
130/145 [=========================>....] - ETA: 53s - loss: 2.0077 - acc: 0.2793
131/145 [==========================>...] - ETA: 49s - loss: 2.0094 - acc: 0.2793
132/145 [==========================>...] - ETA: 46s - loss: 2.0085 - acc: 0.2791
133/145 [==========================>...] - ETA: 42s - loss: 2.0080 - acc: 0.2798
134/145 [==========================>...] - ETA: 38s - loss: 2.0063 - acc: 0.2796
135/145 [==========================>...] - ETA: 35s - loss: 2.0054 - acc: 0.2796
136/145 [===========================>..] - ETA: 31s - loss: 2.0047 - acc: 0.2796
137/145 [===========================>..] - ETA: 28s - loss: 2.0032 - acc: 0.2801
138/145 [===========================>..] - ETA: 24s - loss: 2.0050 - acc: 0.2799
139/145 [===========================>..] - ETA: 21s - loss: 2.0051 - acc: 0.2806
140/145 [===========================>..] - ETA: 17s - loss: 2.0035 - acc: 0.2815
141/145 [============================>.] - ETA: 14s - loss: 2.0037 - acc: 0.2812
142/145 [============================>.] - ETA: 10s - loss: 2.0018 - acc: 0.2819
143/145 [============================>.] - ETA: 7s - loss: 2.0009 - acc: 0.2815
144/145 [============================>.] - ETA: 3s - loss: 1.9996 - acc: 0.2823loss: 1.99745497539
New learning rate: 0.00737027467905
Epoch 00000: val_acc improved from -inf to 0.31695, saving model to /home/ashok/Desktop/out/modelWeights/cnnModelDEp80weights.best.hdf5
Traceback (most recent call last):
File "/home/ashok/PycharmProjects/Tensorflow/food-image-classification--master/imageClassificationByCNN.py", line 188, in
callbacks = [earlystopper, lrate, checkpoint, hist])
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/models.py", line 1097, in fit_generator
initial_epoch=initial_epoch)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/engine/training.py", line 1913, in fit_generator
callbacks.on_epoch_end(epoch, epoch_logs)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/callbacks.py", line 75, in on_epoch_end
callback.on_epoch_end(epoch, logs)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/callbacks.py", line 400, in on_epoch_end
self.model.save(filepath, overwrite=True)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/engine/topology.py", line 2429, in save
save_model(self, filepath, overwrite)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/keras/models.py", line 96, in save_model
f = h5py.File(filepath, 'w')
File "/home/ashok/anaconda3/lib/python3.6/site-packages/h5py/_hl/files.py", line 271, in init
fid = make_fid(name, mode, userblock_size, fapl, swmr=swmr)
File "/home/ashok/anaconda3/lib/python3.6/site-packages/h5py/_hl/files.py", line 107, in make_fid
fid = h5f.create(name, h5f.ACC_TRUNC, fapl=fapl, fcpl=fcpl)
File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper (/home/ilan/minonda/conda-bld/h5py_1490028290543/work/h5py/_objects.c:2846)
File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper (/home/ilan/minonda/conda-bld/h5py_1490028290543/work/h5py/_objects.c:2804)
File "h5py/h5f.pyx", line 98, in h5py.h5f.create (/home/ilan/minonda/conda-bld/h5py_1490028290543/work/h5py/h5f.c:2290)
OSError: Unable to create file (Unable to open file: name = '/home/ashok/desktop/out/modelweights/cnnmodeldep80weights.best.hdf5', errno = 2, error message = 'no such file or directory', flags = 13, o_flags = 242)
Process finished with exit code 1
The text was updated successfully, but these errors were encountered: