-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_continual.py
283 lines (250 loc) · 12.6 KB
/
train_continual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
MaskFormer Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
try:
# ignore ShapelyDeprecationWarning from fvcore
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import os
import math
from detectron2.data import DatasetCatalog, MetadataCatalog
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import (
default_argument_parser,
default_setup,
launch,
)
from detectron2.evaluation import verify_results
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.utils.logger import setup_logger
# MaskFormer
from mask2former import add_maskformer2_config
from mask2former.data.datasets.register_ade20k_panoptic import (
register_current_ade20k_panoptic,
register_complete_ade20k_sem,
register_mem_ade20k_sem
)
from mask2former.data.datasets.register_ade20k_instance import register_current_ade20k_instance
from continual import add_continual_config, Trainer
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
# for poly lr schedule
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_continual_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if cfg.CONT.TASK > 1:
if cfg.CONT.WEIGHTS is not None:
cfg.MODEL.WEIGHTS = cfg.CONT.WEIGHTS
else:
if args.eval_only:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR[:-1] + str(cfg.CONT.TASK), "model_final.pth")
if cfg.CONT.TASK >= 10:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR[:-2] + str(cfg.CONT.TASK), "model_final.pth")
else:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR[:-1] + str(cfg.CONT.TASK - 1), "model_final.pth")
if cfg.CONT.TASK >= 10:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR[:-2] + str(cfg.CONT.TASK - 1), "model_final.pth")
if cfg.CONT.OLD_WEIGHTS is None:
cfg.CONT.OLD_WEIGHTS = cfg.MODEL.WEIGHTS
elif args.eval_only:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR[:-1] + str(cfg.CONT.TASK), "model_final.pth")
if cfg.CONT.TASK >= 10:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR[:-2] + str(cfg.CONT.TASK), "model_final.pth")
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "mask_former" module
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask2former")
return cfg
def main(args):
cfg = setup(args)
# panoptic segmentation
if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON == True:
predefined_split = {
"current_ade20k_panoptic_train": (
"datasets/ADEChallengeData2016/images/training",
"datasets/ADEChallengeData2016/ade20k_panoptic_train",
f"json/pan/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK}_pan.json",
"datasets/ADEChallengeData2016/annotations_detectron2/training",
f"json/pan/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK}_inst.json",
),
"current_ade20k_panoptic_val": (
"datasets/ADEChallengeData2016/images/validation",
"datasets/ADEChallengeData2016/ade20k_panoptic_val",
f"json/pan/val_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK}_pan.json",
"datasets/ADEChallengeData2016/annotations_detectron2/validation",
f"json/pan/val_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK}_inst.json",
),
}
register_current_ade20k_panoptic(predefined_split)
if cfg.CONT.TASK > 1 and cfg.CONT.MEMORY == True:
predefined_split_memory = {
"memory_ade20k_panoptic_train": (
"datasets/ADEChallengeData2016/images/training",
"datasets/ADEChallengeData2016/ade20k_panoptic_train",
f"json/memory/pan/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK - 1}_pan.json",
"datasets/ADEChallengeData2016/annotations_detectron2/training",
f"json/memory/pan/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK - 1}_inst.json",
),
}
register_current_ade20k_panoptic(predefined_split_memory)
current_pan_data_train = DatasetCatalog.get("current_ade20k_panoptic_train")
memory_pan_data_train = DatasetCatalog.get("memory_ade20k_panoptic_train")
cur_w_mem_pan_data_train = current_pan_data_train + memory_pan_data_train
cur_w_mem_pan_meta_train = MetadataCatalog.get("current_ade20k_panoptic_train")
DatasetCatalog.register(
"cur_w_mem_ade20k_panoptic_train", lambda: cur_w_mem_pan_data_train
)
MetadataCatalog.get("cur_w_mem_ade20k_panoptic_train").set(
evaluator_type=cur_w_mem_pan_meta_train.evaluator_type,
ignore_label=cur_w_mem_pan_meta_train.ignore_label,
image_root=cur_w_mem_pan_meta_train.image_root,
json_file=cur_w_mem_pan_meta_train.json_file,
label_divisor=cur_w_mem_pan_meta_train.label_divisor,
stuff_classes=cur_w_mem_pan_meta_train.stuff_classes,
stuff_colors=cur_w_mem_pan_meta_train.stuff_colors,
stuff_dataset_id_to_contiguous_id=cur_w_mem_pan_meta_train.stuff_dataset_id_to_contiguous_id,
thing_classes=cur_w_mem_pan_meta_train.thing_classes,
thing_colors=cur_w_mem_pan_meta_train.thing_colors,
thing_dataset_id_to_contiguous_id=cur_w_mem_pan_meta_train.thing_dataset_id_to_contiguous_id,
)
cfg.defrost()
cfg.DATASETS.TRAIN = ("cur_w_mem_ade20k_panoptic_train",)
cfg.freeze()
# semantic segmentation
if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON == False and cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON == False:
register_complete_ade20k_sem("datasets")
complete_sem_data_train = DatasetCatalog.get("complete_ade20k_sem_seg_train")
complete_sem_data_val = DatasetCatalog.get("complete_ade20k_sem_seg_val")
img_list_train = [img['file_name'] for img in DatasetCatalog.get("current_ade20k_panoptic_train")]
img_list_val = [img['file_name'] for img in DatasetCatalog.get("current_ade20k_panoptic_val")]
current_sem_data_train = []
current_sem_data_val = []
for img in complete_sem_data_train:
if img['file_name'] in img_list_train:
current_sem_data_train.append(img)
for img in complete_sem_data_val:
if img['file_name'] in img_list_val:
current_sem_data_val.append(img)
complete_sem_meta_train = MetadataCatalog.get("complete_ade20k_sem_seg_train")
complete_sem_meta_val = MetadataCatalog.get("complete_ade20k_sem_seg_val")
DatasetCatalog.register(
"current_ade20k_sem_seg_train", lambda: current_sem_data_train
)
DatasetCatalog.register(
"current_ade20k_sem_seg_val", lambda: current_sem_data_val
)
MetadataCatalog.get("current_ade20k_sem_seg_train").set(
evaluator_type=complete_sem_meta_train.evaluator_type,
ignore_label=complete_sem_meta_train.ignore_label,
image_root=complete_sem_meta_train.image_root,
sem_seg_root=complete_sem_meta_train.sem_seg_root,
stuff_classes=complete_sem_meta_train.stuff_classes,
)
MetadataCatalog.get("current_ade20k_sem_seg_val").set(
evaluator_type=complete_sem_meta_val.evaluator_type,
ignore_label=complete_sem_meta_val.ignore_label,
image_root=complete_sem_meta_val.image_root,
sem_seg_root=complete_sem_meta_val.sem_seg_root,
stuff_classes=complete_sem_meta_val.stuff_classes,
)
if cfg.CONT.TASK > 1 and cfg.CONT.MEMORY == True:
register_mem_ade20k_sem(
"datasets",
f"json/memory/sem/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK - 1}"
)
current_sem_data_train = DatasetCatalog.get("current_ade20k_sem_seg_train")
current_sem_meta_train = MetadataCatalog.get("current_ade20k_sem_seg_train")
memory_sem_data_train = DatasetCatalog.get("memory_ade20k_sem_seg_train")
for per_mem_data in current_sem_data_train:
per_mem_data['memory'] = False
for per_mem_data in memory_sem_data_train:
per_mem_data['memory'] = True
cur_w_mem_sem_data_train = current_sem_data_train + memory_sem_data_train
DatasetCatalog.register(
"cur_w_mem_sem_data_train", lambda: cur_w_mem_sem_data_train
)
MetadataCatalog.get("cur_w_mem_sem_data_train").set(
evaluator_type=current_sem_meta_train.evaluator_type,
ignore_label=current_sem_meta_train.ignore_label,
image_root=current_sem_meta_train.image_root,
stuff_classes=current_sem_meta_train.stuff_classes,
)
cfg.defrost()
cfg.DATASETS.TRAIN = ("cur_w_mem_sem_data_train",)
cfg.freeze()
# instance segmentation
if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON == False and cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON == False:
predefined_split = {
"current_ade20k_instance_train": (
"datasets/ADEChallengeData2016/images/training",
f"json/inst/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK}_inst.json",
),
"current_ade20k_instance_val": (
"datasets/ADEChallengeData2016/images/validation",
f"json/inst/val_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK}_inst.json",
),
}
register_current_ade20k_instance(predefined_split)
if cfg.CONT.TASK > 1 and cfg.CONT.MEMORY == True:
predefined_split_memory = {
"memory_ade20k_instance_train": (
"datasets/ADEChallengeData2016/images/training",
f"json/memory/inst/train_{cfg.CONT.BASE_CLS}-{cfg.CONT.INC_CLS}_step{cfg.CONT.TASK - 1}_inst.json",
),
}
register_current_ade20k_instance(predefined_split_memory)
current_inst_data_train = DatasetCatalog.get("current_ade20k_instance_train")
current_inst_meta_train = MetadataCatalog.get("current_ade20k_instance_train")
memory_inst_data_train = DatasetCatalog.get("memory_ade20k_instance_train")
cur_w_mem_inst_data_train = current_inst_data_train + memory_inst_data_train
DatasetCatalog.register(
"cur_w_mem_ade20k_instance_train", lambda: cur_w_mem_inst_data_train
)
MetadataCatalog.get("cur_w_mem_ade20k_instance_train").set(
evaluator_type=current_inst_meta_train.evaluator_type,
image_root=current_inst_meta_train.image_root,
# json_file=cur_w_mem_inst_meta_train.json_file,
name="cur_w_mem_ade20k_instance_train",
thing_classes=current_inst_meta_train.thing_classes,
thing_dataset_id_to_contiguous_id=current_inst_meta_train.thing_dataset_id_to_contiguous_id,
)
cfg.defrost()
cfg.DATASETS.TRAIN = ("cur_w_mem_ade20k_instance_train",)
cfg.freeze()
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)