-
Notifications
You must be signed in to change notification settings - Fork 0
/
optim.py
52 lines (42 loc) · 1.77 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from typing import Sequence
import torch.optim
from torch.optim import Optimizer
from torch.nn import Module
def new_optimizer(name: str, model: Module, **kwargs) -> Optimizer:
r"""Initialize new optimizer for parameters of given model.
Args:
name: Name of optimizer.
model: Module whose parameters are to be optimized.
kwargs: Keyword arguments for named optimizer.
Returns:
New optimizer instance.
"""
cls = getattr(torch.optim, name, None)
if cls is None:
raise ValueError(f"Unknown optimizer: {name}")
if not issubclass(cls, Optimizer):
raise TypeError(f"Requested type '{name}' is not a subclass of torch.optim.Optimizer")
if "learning_rate" in kwargs:
if "lr" in kwargs:
raise ValueError("new_optimizer() 'lr' and 'learning_rate' are mutually exclusive")
kwargs["lr"] = kwargs.pop("learning_rate")
return cls(model.parameters(), **kwargs)
def slope_of_least_squares_fit(values: Sequence[float]) -> float:
r"""Compute slope of least squares fit of line to last n objective function values
See also:
- https://www.che.udel.edu/pdf/FittingData.pdf
- https://en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E2%8B%AF
- https://proofwiki.org/wiki/Sum_of_Sequence_of_Squares
"""
n = len(values)
if n < 2:
return float("nan")
if n == 2:
return values[1] - values[0]
# sum_x1 divided by n as a slight modified to reduce no. of operations,
# i.e., the other terms are divided by n as well by dropping one factor n
sum_x1 = (n + 1) / 2
sum_x2 = n * (n + 1) * (2 * n + 1) / 6
sum_y1 = sum(values)
sum_xy = sum(((x + 1) * y for x, y in enumerate(values)))
return (sum_xy - sum_x1 * sum_y1) / (sum_x2 - n * sum_x1 * sum_x1)