Skip to content

Soil moisture module for digital soil moisture mapping.

License

Notifications You must be signed in to change notification settings

joboog/sm-module

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Soil moisture module for digital soil moisture mapping.

The module was developed in the study of Houben et al. (2023) (to be) published in Vadose Zone Journal:

Houben, T., Khurana, S., Ebeling, P., Schmid, J., Boog, J., (2023): Machine-learning based spatio-temporal prediction of soil moisture in a grassland hillslope. Vadose Zone Journal.

Folders in this repository

SM_module

Contains the module with all functions and scripts to run the machine learning models.

eval_scripts

Contains scripts to evaluate the machine learning models.

run_scripts

Contains scripts to run the machine learning models which are presented in the manuscript.

.
├── AUTHORS.md 
├── LICENSE
├── README.md
└── SM_module
    ├── SM
    │   ├── cfg.py
    │   ├── eval.py
    │   ├── io.py
    │   ├── maps.py
    │   ├── misc.py
    │   ├── process.py
    │   ├── training.py
    │   └── vis.py
    ├── eval_scripts
    │   ├── I60_20210531_SM_example_Evaluation_PE.py
    │   ├── I69_20211127_RF_seed12000_JB_maps_vis.py
    │   ├── I85_20211124_GBRT_seed12000_PE_maps_vis.py
    │   └── I85_20211124_NN_seed12000_TH_maps_vis.py
    ├── ml-project-sm.yml
    ├── run_scripts
    │   ├── I41_SVR_test_seed_manuscript.py
    │   ├── I69_20210614_Fit-SpatioTemp-RF_JB.py
    │   ├── I71_20211124_SM_GBRT_basefeat_tune_seeds_eve_PE.py
    │   ├── I74_20210630_SM_run_NN_54_12000_TH.py
    │   ├── I74_20210630_SM_run_NN_54_1337_TH.py
    │   ├── I74_20210630_SM_run_NN_54_420_TH.py
    │   ├── I74_20210630_SM_run_NN_54_42_TH.py
    │   ├── I74_20210630_SM_run_NN_54_7_TH.py
    │   ├── I74_20210630_SM_run_NN_BEST_54_12000_TH.py
    │   ├── I74_20210630_SM_run_NN_BEST_54_1337_TH.py
    │   ├── I74_20210630_SM_run_NN_BEST_54_420_TH.py
    │   ├── I74_20210630_SM_run_NN_BEST_54_42_TH.py
    │   └── I74_20210630_SM_run_NN_BEST_54_7_TH.py
    └── setup.py

Installation

Create the ml-project-sm environment and install dependencies with the following command:

conda env create -f SM_module/ml-project-sm.yml

Activate the environment with the following command:

conda activate ml-project-sm

Then install the SM_module with pip (maybe install/upgrade pip before):

cd SM_module
pip install .

If you want to be able to adapt the package code and have the changes available in your environment (kernel reload required), use the following flag:

pip install -e .

License Information

This product uses third-party dependencies with their respective licenses listed in the LICENSE file.

About

Soil moisture module for digital soil moisture mapping.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%