Skip to content

johngear/eecs504

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EECS504 Final Project

team: Privacy Advocates

project: Facial Anonymization in Video

due: December 14, 2020

List of Materials used for reference

Residual NN for Images: https://arxiv.org/abs/1512.03385

Documentation for how OpenCV NN was trained: https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/how_to_train_face_detector.txt

SqueezeNet: https://arxiv.org/pdf/1602.07360.pdf https://github.com/forresti/SqueezeNet TF Implement: https://github.com/vonclites/squeezenet

EdgeNet is a small sized SqueezeNet-like architecture with FPGA implementation. Sort of useless other than proof of concept. Used on drones for edge computing. https://ieeexplore-ieee-org.proxy.lib.umich.edu/document/8617876

ZynqNet seems like a different variant of EdgeNet. https://arxiv.org/pdf/2005.06892.pdf

Dataset Used: WIDER Face: A Face Detection Benchmark (Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

From the submitted project proposal:

Description

Our project will process videos that contain human faces and return video with all facial features removed, either by performing a blur with randomized parameters, or by omitting facial pixels all together. We will likely do this by training a convolution neural network with a dataset used for video facial recognition, such as ‘Youtube Faces with Facial Keypoints’ found here.

Existing video editing software has blurring functionality, but the user often has to select the features, and it’s unclear whether deblurring could reveal the identity after-the-fact. There are a few papers and similar projects available online that have demonstrated such work, such as this research paper, the following two articles, and the work of Terrance Boult and Walter Schierer.

If time and project complexity allow, an additional portion of the project could be examining feasibility of an on-device-algorithm that could be used on a camera so there was no back-door to deanonymize the data.

Demo

We hope to provide side-by-side video of before and after the algorithm runs on a variety of scenes containing people. It would be cool to implement it so that we could run it on live video, but achieving this level of efficiency with our methods may not be feasible.

About

team Privacy Advocates

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •