Skip to content

Code for the paper "A Gift from Label Smoothing: Robust Training with Adaptive Label Smoothing via Auxiliary Classifier under Label Noise" (AAAI 2023)

Notifications You must be signed in to change notification settings

jongwooko/ALASCA

Repository files navigation

[Official] ALASCA: Adative Label Smoothing via Auxiliary Classifier

This repository contains code for AAAI-23 Paper "A Gift from Label Smoothing: Robust Training with Adaptive Label Smoothing via Auxiliary Classifier under Label Noise"

How to use

All steps start from the root directory.

  1. Set environment setup
pip install -r requirements.txt
  1. ALASCA (CIFAR Symmetric 50% Noise)
python train_cifar.py --gpu 0 --r 0.5 --noise-type sym --epochs 120 --dataset cifar10 --loss-fn ce --wd 1e-3 --out ./saved_models/ --alasca --position_all
  1. ALASCA + SCE (CIFAR Asymmetric 40% Noise)
python train_cifar.py --gpu 0 --r 0.4 --noise-type asym --epochs 120 --dataset cifar10 --loss-fn sce --wd 1e-3 --out ./saved_models/ --alasca --position_all
  1. ALASCA + Co-teaching (CIFAR Instance-dependent 40% Noise)
python train_cifar.py --gpu 0 --r 0.4 --noise-type sym --epochs 120 --dataset cifar10 --loss-fn ce --num_gradual 30 --use_multi_networks --multi_networks_method coteach --out ./saved_models/ --alasca --position_all

References

About

Code for the paper "A Gift from Label Smoothing: Robust Training with Adaptive Label Smoothing via Auxiliary Classifier under Label Noise" (AAAI 2023)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages