Besides parsing and evaluating expressions, the expression parser supports a number of features to customize processing and evaluation of expressions and outputting expressions.
On this page:
- Function transforms
- Custom argument parsing
- Custom LaTeX handlers
- Custom HTML, LaTeX and string output
- Customize supported characters
It is possible to preprocess function arguments and post process a functions return value by writing a transform for the function. A transform is a function wrapping around a function to be transformed or completely replaces a function.
For example, the functions for math.js use zero-based matrix indices (as is common in programing languages), but the expression parser uses one-based indices. To enable this, all functions dealing with indices have a transform, which changes input from one-based to zero-based, and transforms output (and error message) from zero-based to one-based.
// using plain JavaScript, indices are zero-based:
const a = [[1, 2], [3, 4]] // a 2x2 matrix
math.subset(a, math.index(0, 1)) // returns 2
// using the expression parser, indices are transformed to one-based:
const a = [[1, 2], [3, 4]] // a 2x2 matrix
let scope = {
a: a
}
math.evaluate('subset(a, index(1, 2))', scope) // returns 2
To create a transform for a function, the transform function must be attached
to the function as property transform
:
import { create, all } from 'mathjs'
const math = create(all)
// create a function
function addIt(a, b) {
return a + b
}
// attach a transform function to the function addIt
addIt.transform = function (a, b) {
console.log('input: a=' + a + ', b=' + b)
// we can manipulate input here before executing addIt
const res = addIt(a, b)
console.log('result: ' + res)
// we can manipulate result here before returning
return res
}
// import the function into math.js
math.import({
addIt: addIt
})
// use the function via the expression parser
console.log('Using expression parser:')
console.log('2+4=' + math.evaluate('addIt(2, 4)'))
// This will output:
//
// input: a=2, b=4
// result: 6
// 2+4=6
// when used via plain JavaScript, the transform is not invoked
console.log('')
console.log('Using plain JavaScript:')
console.log('2+4=' + math.addIt(2, 4))
// This will output:
//
// 6
Functions with a transform must be imported in the math
namespace, as they
need to be processed at compile time. They are not supported when passed via a
scope at evaluation time.
The expression parser of math.js has support for letting functions
parse and evaluate arguments themselves, instead of calling them with
evaluated arguments. This is useful for example when creating a function
like plot(f(x), x)
or integrate(f(x), x, start, end)
, where some of the
arguments need to be processed in a special way. In these cases, the expression
f(x)
will be evaluated repeatedly by the function, and x
is not evaluated
but used to specify the variable looping over the function f(x)
.
Functions having a property rawArgs
with value true
are treated in a special
way by the expression parser: they will be invoked with unevaluated arguments,
allowing the function to process the arguments in a customized way. Raw
functions are called as:
rawFunction(args: Node[], math: Object, scope: Map)
Where :
args
is an Array with nodes of the parsed arguments.math
is the math namespace against which the expression was compiled.scope
is aMap
interface containing the variables defined in the scope passed viaevaluate(scope)
. The passed scope is always aMap
interface, and normally aPartitionedMap
is used to separate local function variables likex
in a custom defined functionf(x) = rawFunction(x) ^ 2
from the scope variables. Note that aPartitionedMap
can recursively link to anotherPartitionedMap
.
Raw functions must be imported in the math
namespace, as they need to be
processed at compile time. They are not supported when passed via a scope
at evaluation time.
A simple example:
function myFunction(args, math, scope) {
// get string representation of the arguments
const str = args.map(function (arg) {
return arg.toString()
})
// evaluate the arguments
const res = args.map(function (arg) {
return arg.compile().evaluate(scope)
})
return 'arguments: ' + str.join(',') + ', evaluated: ' + res.join(',')
}
// mark the function as "rawArgs", so it will be called with unevaluated arguments
myFunction.rawArgs = true
// import the new function in the math namespace
math.import({
myFunction: myFunction
})
// use the function
math.evaluate('myFunction(2 + 3, sqrt(4))')
// returns 'arguments: 2 + 3, sqrt(4), evaluated: 5, 2'
You can attach a toTex
property to your custom functions before importing them to define their LaTeX output. This
toTex
property can be a handler in the format described in the next section 'Custom LaTeX and String conversion'
or a template string similar to ES6 templates.
${name}
: Gets replaced by the name of the function${args}
: Gets replaced by a comma separated list of the arguments of the function.${args[0]}
: Gets replaced by the first argument of a function$$
: Gets replaced by$
const customFunctions = {
plus: function (a, b) {
return a + b
},
minus: function (a, b) {
return a - b
},
binom: function (n, k) {
return 1
}
}
customFunctions.plus.toTex = '${args[0]}+${args[1]}' //template string
customFunctions.binom.toTex = '\\mathrm{${name}}\\left(${args}\\right)' //template string
customFunctions.minus.toTex = function (node, options) { //handler function
return node.args[0].toTex(options) + node.name + node.args[1].toTex(options)
}
math.import(customFunctions)
math.parse('plus(1,2)').toTex() // '1+2'
math.parse('binom(1,2)').toTex() // '\\mathrm{binom}\\left(1,2\\right)'
math.parse('minus(1,2)').toTex() // '1minus2'
All expression nodes have a method toTex
and toString
to output an expression respectively in HTML or LaTex format or as regular text .
The functions toHTML
, toTex
and toString
accept an options
argument to customise output. This object is of the following form:
{
parenthesis: 'keep', // parenthesis option
handler: someHandler, // handler to change the output
implicit: 'hide' // how to treat implicit multiplication
}
The parenthesis
option changes the way parentheses are used in the output. There are three options available:
keep
Keep the parentheses from the input and display them as is. This is the default.auto
Only display parentheses that are necessary. Mathjs tries to get rid of as much parentheses as possible.all
Display all parentheses that are given by the structure of the node tree. This makes the output precedence unambiguous.
There's two ways of passing callbacks:
- Pass an object that maps function names to callbacks. Those callbacks will be used for FunctionNodes with functions of that name.
- Pass a function to
toTex
. This function will then be used for every node.
const expression = math.parse('(1+1+1)')
expression.toString() // (1 + 1 + 1)
expression.toString({parenthesis: 'keep'}) // (1 + 1 + 1)
expression.toString({parenthesis: 'auto'}) // 1 + 1 + 1
expression.toString({parenthesis: 'all'}) // (1 + 1) + 1
You can provide the toTex
and toString
functions of an expression with your own custom handlers that override the internal behaviour. This is especially useful to provide LaTeX/string output for your own custom functions. This can be done in two ways:
- Pass an object that maps function names to callbacks. Those callbacks will be used for FunctionNodes that contain functions with that name.
- Pass a callback directly. This callback will run for every node, so you can replace the output of anything you like.
A callback function has the following form:
function callback (node, options) {
...
}
Where options
is the object passed to toHTML
/toTex
/toString
. Don't forget to pass this on to the child nodes, and node
is a reference to the current node.
If a callback returns nothing, the standard output will be used. If your callback returns a string, this string will be used.
Although the following examples use toTex
, it works for toString
and toHTML
in the same way
const customFunctions = {
binomial: function (n, k) {
//calculate n choose k
// (do some stuff)
return result
}
}
const customLaTeX = {
'binomial': function (node, options) { //provide toTex for your own custom function
return '\\binom{' + node.args[0].toTex(options) + '}{' + node.args[1].toTex(options) + '}'
},
'factorial': function (node, options) { //override toTex for builtin functions
return 'factorial\\left(' + node.args[0] + '\\right)'
}
}
You can simply use your custom toTex functions by passing them to toTex
:
math.import(customFunctions)
const expression = math.parse('binomial(factorial(2),1)')
const latex = expression.toTex({handler: customLaTeX})
// latex now contains "\binom{factorial\\left(2\\right)}{1}"
function customLaTeX(node, options) {
if ((node.type === 'OperatorNode') && (node.fn === 'add')) {
//don't forget to pass the options to the toTex functions
return node.args[0].toTex(options) + ' plus ' + node.args[1].toTex(options)
}
else if (node.type === 'ConstantNode') {
if (node.value === 0) {
return '\\mbox{zero}'
}
else if (node.value === 1) {
return '\\mbox{one}'
}
else if (node.value === 2) {
return '\\mbox{two}'
}
else {
return node.value
}
}
}
const expression = math.parse('1+2')
const latex = expression.toTex({handler: customLaTeX})
// latex now contains '\mbox{one} plus \mbox{two}'
Another example in conjunction with custom functions:
const customFunctions = {
binomial: function (n, k) {
//calculate n choose k
// (do some stuff)
return result
}
}
function customLaTeX(node, options) {
if ((node.type === 'FunctionNode') && (node.name === 'binomial')) {
return '\\binom{' + node.args[0].toTex(options) + '}{' + node.args[1].toTex(options) + '}'
}
}
math.import(customFunctions)
const expression = math.parse('binomial(2,1)')
const latex = expression.toTex({handler: customLaTeX})
// latex now contains "\binom{2}{1}"
You can change the way that implicit multiplication is converted to a string or LaTeX. The two options are hide
, to not show a multiplication operator for implicit multiplication and show
to show it.
Example:
const node = math.parse('2a')
node.toString() // '2 a'
node.toString({implicit: 'hide'}) // '2 a'
node.toString({implicit: 'show'}) // '2 * a'
node.toTex() // '2~ a'
node.toTex({implicit: 'hide'}) // '2~ a'
node.toTex({implicit: 'show'}) // '2\\cdot a'
It is possible to customize the characters allowed in symbols and digits.
The parse
function exposes the following test functions:
math.parse.isAlpha(c, cPrev, cNext)
math.parse.isWhitespace(c, nestingLevel)
math.parse.isDecimalMark(c, cNext)
math.parse.isDigitDot(c)
math.parse.isDigit(c)
The exact signature and implementation of these functions can be looked up in the source code of the parser. The allowed alpha characters are described here: Constants and variables.
For example, the phone character ☎
is not supported by default. It can be enabled
by replacing the isAlpha
function:
const isAlphaOriginal = math.parse.isAlpha
math.parse.isAlpha = function (c, cPrev, cNext) {
return isAlphaOriginal(c, cPrev, cNext) || (c === '\u260E')
}
// now we can use the \u260E (phone) character in expressions
const result = math.evaluate('\u260Efoo', {'\u260Efoo': 42}) // returns 42
console.log(result)