Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ex7_2_gan_cnn_mnist_tf.py를 실행하니 다음과 같은 에러가 납니다. #5

Open
kwhkim opened this issue Nov 25, 2018 · 2 comments

Comments

@kwhkim
Copy link

kwhkim commented Nov 25, 2018

Using TensorFlow backend.
<function image_data_format at 0x7fb6200a4d90>
Output_fold is GAN_OUT
2018-11-25 08:56:45.589349: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to
use: SSE4.1 SSE4.2 AVX
2018-11-25 08:56:45.679946: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node read from SysFS had negative value (-1), but there
must be at least one NUMA node, so returning NUMA node zero
2018-11-25 08:56:45.680395: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1411] Found device 0 with properties:
name: Tesla K80 major: 3 minor: 7 memoryClockRate(GHz): 0.8235
pciBusID: 0000:00:04.0
totalMemory: 11.17GiB freeMemory: 11.09GiB
2018-11-25 08:56:45.680431: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1490] Adding visible gpu devices: 0
2018-11-25 08:56:46.007533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-11-25 08:56:46.007606: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] 0
2018-11-25 08:56:46.007617: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0: N
2018-11-25 08:56:46.007899: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1103] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 wi
th 10749 MB memory) -> physical GPU (device: 0, name: Tesla K80, pci bus id: 0000:00:04.0, compute capability: 3.7)
Epoch is 0
Number of batches 2
Traceback (most recent call last):
File "ex7_2_gan_cnn_mnist_tf.py", line 211, in
main()
File "ex7_2_gan_cnn_mnist_tf.py", line 207, in main
train(args)
File "ex7_2_gan_cnn_mnist_tf.py", line 166, in train
d_loss, g_loss = gan.train_both(x)
File "ex7_2_gan_cnn_mnist_tf.py", line 97, in train_both
g_loss = self.train_on_batch(z, [1] * ln)
File "/home/zeroone_gcp/anaconda3/envs/env-py36-gym-tf/lib/python3.6/site-packages/keras/engine/training.py", line 1211, in train_on_batch
class_weight=class_weight)
File "/home/zeroone_gcp/anaconda3/envs/env-py36-gym-tf/lib/python3.6/site-packages/keras/engine/training.py", line 677, in _standardize_user_data
self._set_inputs(x)
File "/home/zeroone_gcp/anaconda3/envs/env-py36-gym-tf/lib/python3.6/site-packages/keras/engine/training.py", line 636, in _set_inputs
outputs = self.call(unpack_singleton(self.inputs))
File "/home/zeroone_gcp/anaconda3/envs/env-py36-gym-tf/lib/python3.6/site-packages/keras/engine/network.py", line 561, in call
if cache_key in self._output_tensor_cache:
AttributeError: 'GAN' object has no attribute '_output_tensor_cache'

환경은 다음과 같습니다. (conda list)

packages in environment at

Name Version Build Channel

_tflow_select 2.1.0 gpu
absl-py 0.6.1 py36_0
astor 0.7.1 py36_0
atari-py 0.1.6
backcall 0.1.0 py36_0
blas 1.0 mkl
bleach 3.0.2 py36_0
box2d-py 2.3.5
c-ares 1.15.0 h7b6447c_1
ca-certificates 2018.03.07 0
certifi 2018.10.15 py36_0
chardet 3.0.4
cloudpickle 0.6.1 py36_0
cudatoolkit 9.2 0
cudnn 7.2.1 cuda9.2_0
cupti 9.2.148 0
cycler 0.10.0 py36_0
dask-core 0.20.2 py36_0
dbus 1.13.2 h714fa37_1
decorator 4.3.0 py36_0
entrypoints 0.2.3 py36_2
expat 2.2.6 he6710b0_0
fontconfig 2.13.0 h9420a91_0
freetype 2.9.1 h8a8886c_1
future 0.17.1
gast 0.2.0 py36_0
glib 2.56.2 hd408876_0
gmp 6.1.2 h6c8ec71_1
grpcio 1.14.1 py36h9ba97e2_0
gst-plugins-base 1.14.0 hbbd80ab_1
gstreamer 1.14.0 hb453b48_1
gym 0.10.9
h5py 2.8.0 py36h989c5e5_3
hdf5 1.10.2 hba1933b_1
icu 58.2 h9c2bf20_1
idna 2.7
imageio 2.4.1 py36_0
intel-openmp 2019.0 118
ipykernel 5.1.0 py36h39e3cac_0
ipython 7.1.1 py36h39e3cac_0
ipython_genutils 0.2.0 py36_0
ipywidgets 7.4.2 py36_0
jedi 0.13.1 py36_0
jinja2 2.10 py36_0
jpeg 9b h024ee3a_2
jsonschema 2.6.0 py36_0
jupyter 1.0.0 py36_7
jupyter_client 5.2.3 py36_0
jupyter_console 6.0.0 py36_0
jupyter_core 4.4.0 py36_0
keras 2.2.4 0
keras-applications 1.0.6 py36_0
keras-base 2.2.4 py36_0
keras-preprocessing 1.0.5 py36_0
kiwisolver 1.0.1 py36hf484d3e_0
libedit 3.1.20170329 h6b74fdf_2
libffi 3.2.1 hd88cf55_4
libgcc-ng 8.2.0 hdf63c60_1
libgfortran-ng 7.3.0 hdf63c60_0
libpng 1.6.35 hbc83047_0
libprotobuf 3.6.1 hd408876_0
libsodium 1.0.16 h1bed415_0
libstdcxx-ng 8.2.0 hdf63c60_1
libtiff 4.0.9 he85c1e1_2
libuuid 1.0.3 h1bed415_2
libxcb 1.13 h1bed415_1
libxml2 2.9.8 h26e45fe_1
markdown 3.0.1 py36_0
markupsafe 1.0 py36h14c3975_1
matplotlib 3.0.1 py36h5429711_0
mistune 0.8.4 py36h7b6447c_0
mkl 2018.0.3 1
mkl_fft 1.0.6 py36h7dd41cf_0
mkl_random 1.0.1 py36h4414c95_1
nbconvert 5.3.1 py36_0
nbformat 4.4.0 py36_0
ncurses 6.1 hf484d3e_0
networkx 2.2 py36_1
notebook 5.7.0 py36_0
numpy 1.15.4 py36h1d66e8a_0
numpy 1.15.4
numpy-base 1.15.4 py36h81de0dd_0
olefile 0.46 py36_0
openssl 1.0.2p h14c3975_0
pandas 0.23.4 py36h04863e7_0
pandoc 2.2.3.2 0
pandocfilters 1.4.2 py36_1
parso 0.3.1 py36_0
patsy 0.5.1 py36_0
pcre 8.42 h439df22_0
pexpect 4.6.0 py36_0
pickleshare 0.7.5 py36_0
Pillow 5.3.0
pillow 5.3.0 py36h34e0f95_0
pip 18.1 py36_0
prometheus_client 0.4.2 py36_0
prompt_toolkit 2.0.7 py36_0
protobuf 3.6.1 py36he6710b0_0
ptyprocess 0.6.0 py36_0
pudb 2018.1
pydot 1.2.4 py36_0
pyglet 1.3.2
pygments 2.2.0 py36_0
PyOpenGL 3.1.0
pyparsing 2.3.0 py36_0
pyqt 5.9.2 py36h05f1152_2
python 3.6.6 h6e4f718_2
python-dateutil 2.7.5 py36_0
pytz 2018.7 py36_0
pywavelets 1.0.1 py36hdd07704_0
pyyaml 3.13 py36h14c3975_0
pyzmq 17.1.2 py36h14c3975_0
qt 5.9.6 h8703b6f_2
qtconsole 4.4.2 py36_0
readline 7.0 h7b6447c_5
requests 2.20.0
scikit-image 0.14.0 py36hf484d3e_1
scikit-learn 0.20.0
scipy 1.1.0
scipy 1.1.0 py36hfa4b5c9_1
seaborn 0.9.0 py36_0
send2trash 1.5.0 py36_0
setuptools 40.5.0 py36_0
sip 4.19.8 py36hf484d3e_0
six 1.11.0
six 1.11.0 py36_1
sklearn 0.0
sqlite 3.25.2 h7b6447c_0
statsmodels 0.9.0 py36h035aef0_0
tensorboard 1.11.0 py36hf484d3e_0
tensorflow 1.11.0 gpu_py36h9c9050a_0
tensorflow-base 1.11.0 gpu_py36had579c0_0
tensorflow-gpu 1.11.0 h0d30ee6_0
termcolor 1.1.0 py36_1
terminado 0.8.1 py36_1
testpath 0.4.2 py36_0
tk 8.6.8 hbc83047_0
toolz 0.9.0 py36_0
tornado 5.1.1 py36h7b6447c_0
traitlets 4.3.2 py36_0
urllib3 1.24.1
urwid 2.0.1
wcwidth 0.1.7 py36_0
webencodings 0.5.1 py36_1
werkzeug 0.14.1 py36_0
wheel 0.32.2 py36_0
widgetsnbextension 3.4.2 py36_0
xz 5.2.4 h14c3975_4
yaml 0.1.7 had09818_2
zeromq 4.2.5 hf484d3e_1
zlib 1.2.11 ha838bed_2

@kwhkim
Copy link
Author

kwhkim commented Nov 25, 2018

keras=2.0.5에서는 에러 없이 실행 되기는 합니다만...

@Lunrot
Copy link

Lunrot commented Jul 9, 2019

학습용 생성망을 ex7_1 예제처럼 생성하면 됩니다.
ex7_1의 make_GD를 참고하세요.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants