-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
69 lines (63 loc) · 2.29 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from flask import Flask, request, jsonify
from flask import render_template
from businesslogic import DataAnalyzer
import json
app = Flask(__name__)
folder = ''
file = "Batting.csv"
delimiter = ","
RANDOMSAMPLING = 0
ADAPTIVESAMPLING = 1
PCA = 0
MDS_EUCLIDEAN = 1
MDS_COSINE = 2
MDS_CORRELATION = 3
ISOMAP = 4
@app.route("/")
def index():
return render_template("index.html")
@app.route("/baseball/batting/generatecluster")
def generateK():
clusters = int(request.args.get('clusters'))
sampling = int(request.args.get('sampling'))
viz = int(request.args.get('viz'))
da = DataAnalyzer(folder, file, delimiter)
data = da.readDataFromFile()
clusterdata = da.performKMeansOnline(data, 3, 5)
return jsonify(data = clusterdata['data'])
@app.route("/baseball/batting/visualize")
def visualizeData():
clusters = int(request.args.get('clusters','3',type=str))
sampling = int(request.args.get('sampling','0',type=str))
viz = int(request.args.get('viz','0',type=str))
print clusters, sampling, viz
da = DataAnalyzer(folder, file, delimiter)
data = da.readDataFromFile()
clusterdata = da.performKMeansOnline(data, clusters, clusters+1)
if sampling == RANDOMSAMPLING:
dataobj = da.doRandomSampling(data, clusterdata)
elif sampling == ADAPTIVESAMPLING:
dataobj = da.doAdaptiveSampling(data, clusterdata)
screedata=[]
if viz == PCA:
data, screedata = da.doPCA(dataobj['df'],dataobj['cluster'])
elif viz == ISOMAP:
data = da.doIsomap(dataobj['df'],dataobj['cluster'])
else:
if viz == MDS_EUCLIDEAN:
data = da.doMDS(dataobj['df'], "EUCLID", dataobj['cluster'])
elif viz == MDS_COSINE:
data = da.doMDS(dataobj['df'], "COSINE", dataobj['cluster'])
else:
data = da.doMDS(dataobj['df'], "CORRELATION", dataobj['cluster'])
return jsonify(data = data, scree = screedata)
from textanalysis import *
@app.route("/textanalysis")
def analyzeText():
valuelist, labellist = tf_idf_genrelines()
#valuelist, labellist = tf_idf_test()
coords = datacoordinates(valuelist, labellist)
return jsonify(data = coords)
#visualizeData()
if __name__ == "__main__":
app.run(host='0.0.0.0',port=5000,debug=True)