-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtextanalysis.py
171 lines (157 loc) · 6.44 KB
/
textanalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import ast
import nltk
#from nltk.stem import *
import string
#from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import Normalizer
from nltk.stem.porter import PorterStemmer
from sklearn.utils import extmath
import pandas as pd
rootdir = ''
movielinesfile = rootdir + "movie_lines_sm.txt"
movietitlesfile = rootdir + "movie_titles_metadata.txt"
'''
Which words appear in the dialoges of movies beloging to a particular genre
'''
def preprocess_prepareMovieGenres():
movieToGenre = dict()
genreToMovieTitles = dict()
lines = [line.rstrip('\n') for line in open(movietitlesfile)]
for line in lines:
arr = line.split("+++$+++")
genres = ast.literal_eval((arr[len(arr) - 1]).strip())
movieToGenre[arr[0].strip()] = genres
for genre in genres:
if not genre in genreToMovieTitles.keys():
genreToMovieTitles[genre] = list()
genreToMovieTitles[genre].append(arr[0].strip())
return movieToGenre, genreToMovieTitles
def preprocess_extractMovieLines():
movieToDialogs = dict()
lines = [line.rstrip('\n') for line in open(movielinesfile)]
stemmer = PorterStemmer()
printable = set(string.printable)
for line in lines:
arr = line.split("+++$+++")
title = arr[2].strip()
line = arr[len(arr)-1].strip()
try:
line = line.encode('utf-8',errors='ignore')
except:
line = filter(lambda x: x in printable, line)
line = stemmer.stem(line)
if not title in movieToDialogs.keys():
movieToDialogs[title] = line
movieToDialogs[title] = " ".join([movieToDialogs[title],line])
return movieToDialogs
def tf_idf_movielines(movieToDialogs):
#movieToDialogs = preprocess_extractMovieLines()
#stops = set(stopwords.words("english"))
movieToWords = dict()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)
for movie,lines in movieToDialogs.iteritems():
lines = lines.lower()
no_punctuation = lines.translate(remove_punctuation_map)
movieToWords[movie] = no_punctuation
#filtered_words = [word.lower() for word in line.split(" ") if word not in stops]
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words='english')
tfs = tfidf.fit_transform(movieToWords.values())
print tfidf
return tfs
def tf_idf_genrelines():
movieToGenre, genreToMovieTitles = preprocess_prepareMovieGenres()
movieToDialogs = preprocess_extractMovieLines()
#tfsmovielines = tf_idf_movielines(movieToDialogs)
#stops = set(stopwords.words("english"))
movieToWords = dict()
genreToWords = dict()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)
genreList = list()
genreWordsList = list()
for genre,movies in genreToMovieTitles.iteritems():
alllines = ""
for movie in movies:
if (not movieToDialogs.has_key(movie)):
continue
lines = movieToDialogs[movie]
lines = lines.lower()
no_punctuation = lines.translate(remove_punctuation_map)
movieToWords[movie] = no_punctuation
alllines = " ".join([alllines, no_punctuation])
if (len(alllines) > 0):
genreToWords[genre] = alllines
genreList = genreList + [genre]
genreWordsList = genreWordsList + [alllines]
return genreWordsList, genreList
def tf_idf_test():
titles = ["The Neatest Little Guide to Stock Market Investing",
"Investing For Dummies, 4th Edition",
"The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share of Stock Market Returns",
"The Little Book of Value Investing",
"Value Investing: From Graham to Buffett and Beyond",
"Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!",
"Investing in Real Estate, 5th Edition",
"Stock Investing For Dummies",
"Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most Investors Miss"
]
exclude = set(string.punctuation)
processed = []
for title in titles:
title = title.lower()
title = ''.join(ch for ch in title if ch not in exclude)
processed = processed + [title]
labels = ["T1","T2","T3","T4","T5","T6","T7","T8","T9"]
return processed, labels
def datacoordinates(datavaluelist, datalabellist):
#filtered_words = [word.lower() for word in line.split(" ") if word not in stops]
stopwords = nltk.corpus.stopwords.words('english')
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words=stopwords, max_features=100)
#tfs_movieline = tfidf.fit_transform(movieToWords.values())
tfs_genreline = tfidf.fit_transform(datavaluelist)
U, S, V = extmath.randomized_svd(tfs_genreline, n_components=3)
coords = []
count = 0
for xy in U:
row = {}
row['yvalue'] = xy[1]
row['xvalue'] = xy[2]
row['pointname'] = datalabellist[count]
row['cluster'] = 'genre'
count += 1
coords.append(row)
count = 0
for x in V[1]:
row = {}
row['yvalue'] = x
row['xvalue'] = V[2][count]
row['pointname'] = tfidf.get_feature_names()[count]
row['cluster'] = 'movie words'
count += 1
coords.append(row)
#lsa = TruncatedSVD(2, algorithm = 'randomized')
#dtm_lsa_genreline = lsa.fit_transform(tfs_genreline)
#dtm_lsa = Normalizer(copy=False).fit_transform(dtm_lsa_genreline)
#df = pd.DataFrame(lsa.components_,index = ["component_1","component_2"],columns =tfidf.get_feature_names())
return coords
stemmer = PorterStemmer()
def stem_tokens(tokens, stemmer):
stemmed = []
for item in tokens:
item = stemmer.stem(item)
if len(item) > 3:
stemmed.append(item)
return stemmed
def tokenize(text):
import re
token_pattern = r"(?u)\b\w\w\w+\b"
token_pattern = re.compile(token_pattern)
text = " ".join(token_pattern.findall(text))
tokens = nltk.word_tokenize(text)
stems = stem_tokens(tokens, stemmer)
return stems
#tf_idf_genrelines()
#stemmer = PorterStemmer()
#print stemmer.stem("Headquarters!? What is it?")