Skip to content

[ICLR-2020] Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With Trainable Masked Layers.

Notifications You must be signed in to change notification settings

junjieliu2910/DynamicSparseTraining

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Installation

Recommend to use python 3.7 and pytorch 1.2

Mnist

LeNet300_100

cd mnist/

Dense baseline

python train.py --model=Lenet300_100 --affix=Lenet300_100_baseline

Dynamic sparse training

python3 train.py --model=Lenet300_100 --mask --alpha=0.0005 --affix=Lenet300_100_mask

Lenet5_Caffe

cd mnist/

Dense baseline

python train.py --model=Lenet5 --affix=Lenet5_baseline

Dynamic sparse training

python train.py --model=Lenet5 --mask --alpha=0.0005 --affix=Lenet5_mask

LSTM

Set hyperparameter

You can set the corresponding hyperparameter in mnist_lstm/train.py

cd mnist_lstm/

Dense baseline

python train.py 

Dynamic sparse training

python train.py --mask

Cifar10

VGG16

Dense baseline

python train.py --model=VGG16 --affix=VGG16_baseline

Dynamic sparse training

python train.py --model=VGG16 --mask --alpha=5e-6 --affix=VGG16_alpha5e-6

WideResNet

Depth and widen factor

You need to change the depth and widen factor manually in cifar/train.py

Dense baseline

python train.py --model=WideResNet --affix=WideResNet_baseline

Dynamic sparse training

python train.py --model=WideResNet --mask --alpha=5e-6 --affix=WideResNet_masked

About

[ICLR-2020] Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With Trainable Masked Layers.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages