Skip to content

Latest commit

 

History

History
419 lines (313 loc) · 11 KB

File metadata and controls

419 lines (313 loc) · 11 KB

NSL KDD binary classification with Transformer

I used it to classify the NSL-KDD dataset by making a slight change on the code I got from the keras documentation page.

importing of required libraries

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers


import numpy as np
import pandas as pd

from sklearn import preprocessing
from sklearn.model_selection import train_test_split

Implement multi head self attention as a Keras layer

class MultiHeadSelfAttention(layers.Layer):
    def __init__(self, embed_dim, num_heads=8):
        super(MultiHeadSelfAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        if embed_dim % num_heads != 0:
            raise ValueError(
                f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
            )
        self.projection_dim = embed_dim // num_heads
        self.query_dense = layers.Dense(embed_dim)
        self.key_dense = layers.Dense(embed_dim)
        self.value_dense = layers.Dense(embed_dim)
        self.combine_heads = layers.Dense(embed_dim)

    def attention(self, query, key, value):
        score = tf.matmul(query, key, transpose_b=True)
        dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
        scaled_score = score / tf.math.sqrt(dim_key)
        weights = tf.nn.softmax(scaled_score, axis=-1)
        output = tf.matmul(weights, value)
        return output, weights

    def separate_heads(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
        return tf.transpose(x, perm=[0, 2, 1, 3])

    def call(self, inputs):
        # x.shape = [batch_size, seq_len, embedding_dim]
        batch_size = tf.shape(inputs)[0]
        query = self.query_dense(inputs)  # (batch_size, seq_len, embed_dim)
        key = self.key_dense(inputs)  # (batch_size, seq_len, embed_dim)
        value = self.value_dense(inputs)  # (batch_size, seq_len, embed_dim)
        query = self.separate_heads(
            query, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        key = self.separate_heads(
            key, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        value = self.separate_heads(
            value, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        attention, weights = self.attention(query, key, value)
        attention = tf.transpose(
            attention, perm=[0, 2, 1, 3]
        )  # (batch_size, seq_len, num_heads, projection_dim)
        concat_attention = tf.reshape(
            attention, (batch_size, -1, self.embed_dim)
        )  # (batch_size, seq_len, embed_dim)
        output = self.combine_heads(
            concat_attention
        )  # (batch_size, seq_len, embed_dim)
        return output

Implement a Transformer block as a layer

class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super(TransformerBlock, self).__init__()
        self.att = MultiHeadSelfAttention(embed_dim, num_heads)
        self.ffn = keras.Sequential(
            [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
        )
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(rate)
        self.dropout2 = layers.Dropout(rate)

    def call(self, inputs, training):
        attn_output = self.att(inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)

Implement embedding layer

Two seperate embedding layers, one for tokens, one for token index (positions).

class TokenAndPositionEmbedding(layers.Layer):
    def __init__(self, maxlen, vocab_size, embed_dim):
        super(TokenAndPositionEmbedding, self).__init__()
        self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
        self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

    def call(self, x):
        maxlen = tf.shape(x)[-1]
        positions = tf.range(start=0, limit=maxlen, delta=1)
        positions = self.pos_emb(positions)
        x = self.token_emb(x)
        return x + positions

prepare NSL KDD dataset

reading CSV files

# c_names --->  column names
c_names = ["duration","protocol_type","service","flag","src_bytes",
    "dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins",
    "logged_in","num_compromised","root_shell","su_attempted","num_root",
    "num_file_creations","num_shells","num_access_files","num_outbound_cmds",
    "is_host_login","is_guest_login","count","srv_count","serror_rate",
    "srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate",
    "diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count",
    "dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate",
    "dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate",
    "dst_host_rerror_rate","dst_host_srv_rerror_rate","labels","difficulty_degree"]

train = pd.read_csv( "data/KDDTrain+.csv", names=c_names) # train file
test = pd.read_csv("data/KDDTest+.csv", names=c_names) # test file

deletion of unnecessary feature (difficulty_degree)

del train["difficulty_degree"] 
del test["difficulty_degree"] 

Converting object features to categories first and then to dummy tables (except "labels")

for i in c_names:
    print((train[i].dtypes))
    if train[i].dtypes==object:
        train[i] = train[i].astype('category')
        test[i] = test[i].astype('category')
        if i=="labels":
            break
        train=pd.get_dummies(train, columns=[i])
        test=pd.get_dummies(test, columns=[i])   
int64
object
object
object
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
float64
float64
float64
float64
float64
float64
float64
int64
int64
float64
float64
float64
float64
float64
float64
float64
float64
object

labels feature converts to binary

# TRAIN
attack_or_not=[]
for i in train["labels"]:#it changes the normal label to "1" and the attack tag to "0" for use in the machine learning algorithm
    if i =="normal":
        attack_or_not.append(1)
    else:
        attack_or_not.append(0)           
train["labels"]=attack_or_not
# TEST
attack_or_not=[]
for i in test["labels"]:#it changes the normal label to "1" and the attack tag to "0" for use in the machine learning algorithm
    if i =="normal":
        attack_or_not.append(1)
    else:
        attack_or_not.append(0)           
test["labels"]=attack_or_not

Synchronizing Test and Train datasets.

Add "0" for the feature that does not exist in one of these two datasets.

f=list(train.columns)
e=list(test.columns)

for i in f:
    if i not in e:
        zero_data =pd.array(np.zeros(len(test["labels"]))) 
        print(len(zero_data))
        test[i] = zero_data
        print(i)
for i in e:
    if i not in f:
        zero_data = np.zeros(len(train["labels"]))
        train[i] = zero_data
        print(i)
22543
service_aol
22543
service_harvest
22543
service_http_2784
22543
service_http_8001
22543
service_red_i
22543
service_tftp_u
22543
service_urh_i

separation of features (data) and Label (target)

y = train["labels"] #this section separates the label and the data into two separate pieces, as Label=y Data=X 
del train["labels"] 
X = train
y_test = test["labels"] #this section separates the label and the data into two separate pieces, as Label=y Data=X 
del test["labels"] 
x_test=test

Normalization and Standardization

X = preprocessing.scale(X)
X = preprocessing.normalize(X)
x_test = preprocessing.scale(x_test)
x_test = preprocessing.normalize(x_test)

Separating Train data into two parts as train and validation

x_train, x_val, y_train, y_val = train_test_split(X, y, test_size = 0.2, random_state = 0, stratify=y)
print(len(x_train), "Training sequences",x_train.shape)
print(len(x_val), "Validation sequences",x_val.shape)
print(len(x_test), "Test sequences",x_test.shape)
100778 Training sequences (100778, 122)
25195 Validation sequences (25195, 122)
22543 Test sequences (22543, 122)

Create classifier model using transformer layer

Transformer layer outputs one vector for each time step of our input sequence. Here, we take the mean across all time steps and use a feed forward network on top of it to classify text.

maxlen=122
vocab_size = 100000  # Only consider the top 20k words



embed_dim = 32  # Embedding size for each token
num_heads = 2  # Number of attention heads
ff_dim = 32  # Hidden layer size in feed forward network inside transformer

inputs = layers.Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
x = transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(20, activation="relu")(x)
x = layers.Dropout(0.1)(x)
outputs = layers.Dense(2, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
x_val = keras.preprocessing.sequence.pad_sequences(x_val, maxlen=maxlen)
x_test = keras.preprocessing.sequence.pad_sequences(x_test , maxlen=maxlen)

Train

model.compile("adam", "sparse_categorical_crossentropy", metrics=["accuracy"])
history = model.fit(
    x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val, y_val)
)
Train on 100778 samples, validate on 25195 samples
Epoch 1/2
100778/100778 [==============================] - 240s 2ms/sample - loss: 0.6915 - accuracy: 0.5331 - val_loss: 0.6908 - val_accuracy: 0.5346
Epoch 2/2
100778/100778 [==============================] - 221s 2ms/sample - loss: 0.6908 - accuracy: 0.5345 - val_loss: 0.6910 - val_accuracy: 0.5346

Evaluate

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
Test loss: 0.7010403732089466
Test accuracy: 0.43073237
score = model.evaluate(x_val, y_val, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
Test loss: 0.690967743196618
Test accuracy: 0.5345902