Skip to content
dev
Switch branches/tags
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Feb 24, 2019
img
Sep 18, 2019
Sep 18, 2019
Jul 30, 2019

BERT NER

Use google BERT to do CoNLL-2003 NER !

new Train model using Python and Inference using C++

ALBERT-TF2.0

BERT-NER-TENSORFLOW-2.0

BERT-SQuAD

Requirements

  • python3
  • pip3 install -r requirements.txt

Run

python run_ner.py --data_dir=data/ --bert_model=bert-base-cased --task_name=ner --output_dir=out_base --max_seq_length=128 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.1

Result

BERT-BASE

Validation Data

             precision    recall  f1-score   support

        PER     0.9677    0.9745    0.9711      1842
        LOC     0.9654    0.9711    0.9682      1837
       MISC     0.8851    0.9111    0.8979       922
        ORG     0.9299    0.9292    0.9295      1341

avg / total     0.9456    0.9534    0.9495      5942

Test Data

             precision    recall  f1-score   support

        PER     0.9635    0.9629    0.9632      1617
        ORG     0.8883    0.9097    0.8989      1661
        LOC     0.9272    0.9317    0.9294      1668
       MISC     0.7689    0.8248    0.7959       702

avg / total     0.9065    0.9209    0.9135      5648

Pretrained model download from here

BERT-LARGE

Validation Data

             precision    recall  f1-score   support

        ORG     0.9288    0.9441    0.9364      1341
        LOC     0.9754    0.9728    0.9741      1837
       MISC     0.8976    0.9219    0.9096       922
        PER     0.9762    0.9799    0.9781      1842

avg / total     0.9531    0.9606    0.9568      5942

Test Data

             precision    recall  f1-score   support

        LOC     0.9366    0.9293    0.9329      1668
        ORG     0.8881    0.9175    0.9026      1661
        PER     0.9695    0.9623    0.9659      1617
       MISC     0.7787    0.8319    0.8044       702

avg / total     0.9121    0.9232    0.9174      5648

Pretrained model download from here

Inference

from bert import Ner

model = Ner("out_base/")

output = model.predict("Steve went to Paris")

print(output)
'''
    [
        {
            "confidence": 0.9981840252876282,
            "tag": "B-PER",
            "word": "Steve"
        },
        {
            "confidence": 0.9998939037322998,
            "tag": "O",
            "word": "went"
        },
        {
            "confidence": 0.999891996383667,
            "tag": "O",
            "word": "to"
        },
        {
            "confidence": 0.9991968274116516,
            "tag": "B-LOC",
            "word": "Paris"
        }
    ]
'''

Inference C++

Pretrained and converted bert-base model download from here

Download libtorch from here

  • install cmake, tested with cmake version 3.10.2

  • unzip downloaded model and libtorch in BERT-NER

  • Compile C++ App

      cd cpp-app/
      cmake -DCMAKE_PREFIX_PATH=../libtorch

    cmake output image

    make

    make output image

  • Runing APP

       ./app ../base

    inference output image

NB: Bert-Base C++ model is split in to two parts.

  • Bert Feature extractor and NER classifier.
  • This is done because jit trace don't support input depended for loop or if conditions inside forword function of model.

Deploy REST-API

BERT NER model deployed as rest api

python api.py

API will be live at 0.0.0.0:8000 endpoint predict

cURL request

curl -X POST http://0.0.0.0:8000/predict -H 'Content-Type: application/json' -d '{ "text": "Steve went to Paris" }'

Output

{
    "result": [
        {
            "confidence": 0.9981840252876282,
            "tag": "B-PER",
            "word": "Steve"
        },
        {
            "confidence": 0.9998939037322998,
            "tag": "O",
            "word": "went"
        },
        {
            "confidence": 0.999891996383667,
            "tag": "O",
            "word": "to"
        },
        {
            "confidence": 0.9991968274116516,
            "tag": "B-LOC",
            "word": "Paris"
        }
    ]
}

cURL

curl output image

Postman

postman output image

C++ unicode support

Tensorflow version