Skip to content

kamata1729/FullySpikingVAE

Repository files navigation

Fully Spiking Variational Autoencoder

official implementation of Fully Spiking Variational Autoencoder

Accepted to AAAI2022!!

paper: https://ojs.aaai.org/index.php/AAAI/article/view/20665/20424

arxiv: https://arxiv.org/abs/2110.00375

overview

Get started

  1. install dependencies
pip install -r requirements.txt
  1. initialize the fid stats
python init_fid_stats.py

Demo

The following command calculates the Inception score & FID of FSVAE trained on CelebA. After that, it outputs demo_input.png, demo_recons.png, and demo_sample.png.

python demo.py

Training Fully Spiking VAE

python main_fsvae exp_name -config NetworkConfigs/dataset_name.yaml

Training settings are defined in NetworkConfigs/*.yaml.

args:

  • name: [required] experiment name
  • config: [required] config file path
  • checkpoint: checkpoint path (if use pretrained model)
  • device: device id of gpu, default 0

You can watch the logs with below command and access http://localhost:8009/

tensorboard --logdir checkpoint --bind_all --port 8009

Training ANN VAE

As a comparison method, we prepared vanilla VAEs of the same network architecture built with ANN, and trained on the same settings.

python main_ann_vae exp_name -dataset dataset_name

args:

  • name: [required] experiment name
  • dataset:[required] dataset name [mnist, fashion, celeba, cifar10]
  • batch_size: default 250
  • latent_dim: default 128
  • checkpoint: checkpoint path (if use pretrained model)
  • device: device id of gpu, default 0

Evaluation

results

Reconstructed Images

mnist_recons fashion_recons cifar_recons celeb_recons

Generated Images

mnist fashion cifar celeb

About

Official implementation of Fully Spiking Variational Autoencoder [AAAI2022]

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages