Skip to content

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data (https://arxiv.org/abs/1610.05755)

Notifications You must be signed in to change notification settings

kamathhrishi/PATE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PATE Example

The scripts in the folder allow you to train a MNIST model using PATE diffrential privacy framework. While running this example would give you an accurate implementation of a PATE implementation. An accurate analysis of DP guarantees is still an work in progress.

[Sorry, I wasn't a very good coder when I wrote this. But, not maintaining this anymore]

Requirements:

  • Pytorch
  • PySyft
$ python Main.py

Scripts present

  • data: Consists of functions for loading datasets
  • Main: The file to be run for a complete PATE model
  • Model: PyTorch model definition. The same model is used for student and teacher.
  • Student: Class to handle student functionality such as training and making predictions
  • Teacher: Class to handle teacher functionality such as training and making noisy predictions. All the Teacher ensembles are handled in this Class
  • util: Functions

This training loop is then executed for a given number of epochs. The performance on the test set of MNIST is shown after each epoch.

About

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data (https://arxiv.org/abs/1610.05755)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages