RotationNet takes multi-view images of an object as input and jointly estimates its pose and object category.
Asako Kanezaki, Yasuyuki Matsushita and Yoshifumi Nishida. RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints. CVPR, pp.5010-5019, 2018. (pdf) (project)
[2018.08.10] We uploaded the scripts and pre-trained models that reproduce our BEST results on ModelNet10 and ModelNet40.
[2017.02] We got the first prize at the SHREC2017 RGB-D Object-to-CAD Retrieval Contest!
[2017.02] We got the first prize at Task 1 in the SHREC2017 Large-scale 3D Shape Retrieval from ShapeNet Core55 Challenge!
Please see SHREC2017_track3 repository to reproduce our results on SHREC2017 track3.
1. Prepare caffe-rotationnet2
$ git clone https://github.com/kanezaki/caffe-rotationnet2.git
$ cd caffe-rotationnet2
Prepare your Makefile.config and compile.
$ make; make pycaffe
$ git clone https://github.com/kanezaki/rotationnet.git
$ cd rotationnet
Models trained on ModelNet10 and ModelNet40 (full set)
$ wget https://data.airc.aist.go.jp/kanezaki.asako/pretrained_models/rotationnet_modelnet10_case2_ori2.caffemodel
$ wget https://data.airc.aist.go.jp/kanezaki.asako/pretrained_models/rotationnet_modelnet40_case2_ori4.caffemodel
Models trained on ModelNet40 (subset)
$ wget https://data.airc.aist.go.jp/kanezaki.asako/pretrained_models/rotationnet_modelnet40_case1.caffemodel
$ wget https://data.airc.aist.go.jp/kanezaki.asako/pretrained_models/rotationnet_modelnet40_case2.caffemodel
Change 'caffe_root' in save_scores.py to your path to caffe-rotationnet2 repository.
Run the demo script.
$ bash demo.sh
This predicts the category of testing images. Please see below and run "demo2.sh" for testing pose estimation.
$ bash get_full_modelnet_png.sh
$ bash test_full_modelnet10.sh
$ bash test_full_modelnet40.sh
$ bash get_modelnet_png.sh
[Su et al. 2015] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV2015.
$ bash test_modelnet40.sh
$ bash get_modelnet_png.sh
Please download the file "ilsvrc_2012_train_iter_310k" according to R-CNN repository
This is done by the following command:
$ wget http://www.cs.berkeley.edu/~rbg/r-cnn-release1-data.tgz
$ tar zxvf r-cnn-release1-data.tgz
$ ./caffe-rotationnet2/build/tools/caffe train -solver Training/rotationnet_modelnet40_case2_solver.prototxt -weights caffe_nets/ilsvrc_2012_train_iter_310k 2>&1 | tee log.txt
$ ./caffe-rotationnet2/build/tools/caffe train -solver Training/rotationnet_modelnet40_case1_solver.prototxt -weights caffe_nets/ilsvrc_2012_train_iter_310k 2>&1 | tee log.txt
$ bash get_modelnet_png.sh
[Su et al. 2015] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV2015.
$ bash make_reference_poses.sh case1 # for case (1)
$ bash make_reference_poses.sh case2 # for case (2)
This predicts the viewpoints of training images and writes the image file paths in the predicted order.
$ bash demo2.sh
This predicts the category and viewpoints of testing images, and then displays 10 training objects in the predicted category seen from the predicted viewpoints.
Please see SHREC2017_track3 repository
BSD