Explanation of data collection, data splits, and experiments can be found here.
You can download the data already divided in the two in-domain
and out-of-domain
splits.
Number of topic pairs for each data split:
- in-domain: allows one of the topics in each pair of the
test
set to appear in thetrain
set, although with a different second topic, - out-of-domain: none of the topics in the
test
set are present in any of the topic-pairs in thetrain
set.
Train | Dev | Test | |
---|---|---|---|
in-domain |
1929 | 1160 | 1158 |
out-of-domain |
2034 | 1152 | 1130 |
To reproduce our results clone Multigen and follow their instructions to train the model on $\alpha$NLG, then save the trained model as anlg
.
Preprocess multi-hop relational paths for OTTers. Set $DATA
to either be in_domain
or out_of_domain
.
export DATA=in_domain
python ground_concepts_simple.py $DATA
python find_neighbours.py $DATA
python filter_triple.py $DATA
export DATA_TYPE={in_domain, out_of_domain}
export ROOT_PATH=..
export DEVICE=1
export PRE_TRAINED={gpt2-small, anlg}
CUDA_VISIBLE_DEVICES=${DEVICE} \
python3 main.py \
--train_data_file ${ROOT_PATH}/data/${DATA_TYPE}/train \
--dev_data_file ${ROOT_PATH}/data/${DATA_TYPE}/dev \
--test_data_file ${ROOT_PATH}/data/${DATA_TYPE}/test \
--graph_path 2hops_100_directed_triple_filter.json \
--output_dir ${ROOT_PATH}/models/${DATA_TYPE}/grf-${DATA_TYPE} \
--source_length 32 \
--target_length 16 \
--model_type gpt2 \
--model_name_or_path ${ROOT_PATH}/models/${PRE_TRAINED} \
--do_train \
--per_gpu_train_batch_size 16 \
--per_gpu_eval_batch_size 16 \
--workers 7 \
--seed 42 \
--evaluate_metrics bleu \
--overwrite_output_dir \
--num_train_epochs 3 \
--learning_rate 3e-5 \
--aggregate_method max \
--alpha 3 \
--beta 5 \
--gamma 0.5 \
--weight_decay 0.0 \
--warmup_ratio 0.0 \
--logging_steps 20 \
If you use the dataset in your work please cite with the following
@inproceedings{sevegnani-etal-2021-otters,
title = "{OTT}ers: One-turn Topic Transitions for Open-Domain Dialogue",
author = "Sevegnani, Karin and
Howcroft, David M. and
Konstas, Ioannis and
Rieser, Verena",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics"
}