Skip to content

kanhaX-design/base64-encoding-and-decoding-codes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

2 Commits
ย 
ย 

Repository files navigation

import math import operator from statistics import mean, median, mode import json import random import hashlib import base64 from datetime import datetime from decimal import Decimal, getcontext import cmath from fractions import Fraction

Set high precision for calculations

getcontext().prec = 50

Calculator history storage

calculation_history = []

def save_to_history(operation, inputs, result): """Save calculation to history""" entry = { "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "operation": operation, "inputs": inputs, "result": result } calculation_history.append(entry)

def show_history(): """Display calculation history""" print("\n๐Ÿ” === Calculation History ===") if not calculation_history: print("No calculations in history.") return

for i, entry in enumerate(calculation_history[-15:], 1):  # Show last 15
    print(f"{i}. [{entry['timestamp']}] {entry['operation']}")
    print(f"   ๐Ÿ“Š Inputs: {entry['inputs']} โ†’ ๐ŸŽฏ Result: {entry['result']}")

def export_history(): """Export calculation history to JSON""" filename = f"calculator_history_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" with open(filename, 'w') as f: json.dump(calculation_history, f, indent=2) print(f"๐Ÿ’พ History exported to {filename}")

def clear_history(): """Clear calculation history""" global calculation_history calculation_history = [] print("๐Ÿ—‘๏ธ History cleared!")

def get_multiple_numbers(min_count=1, max_count=20): """Get multiple numbers from user input (flexible count)""" while True: try: count = int(input(f"๐Ÿ“Š How many numbers? ({min_count}-{max_count}): ")) if min_count <= count <= max_count: break else: print(f"โŒ Please enter a number between {min_count} and {max_count}!") except ValueError: print("โŒ Please enter a valid number!")

numbers = []
print(f"๐Ÿ”ข Enter {count} numbers:")
for i in range(count):
    while True:
        try:
            num = float(input(f"Number {i+1}: "))
            numbers.append(num)
            break
        except ValueError:
            print("โŒ Please enter a valid number!")
return numbers

def quick_sum(): """Quick sum function that can be used anywhere""" print("\nโšก === Quick Sum ===") numbers = get_multiple_numbers(1, 20) result = sum(numbers) print(f"๐Ÿ”ข Sum of {len(numbers)} numbers: {result}") save_to_history("Quick Sum", numbers, result) return result

def machine_learning_operations(): """Basic ML operations without external libraries""" print("\n๐Ÿค– === Machine Learning Operations ===") print("1. ๐Ÿ“ˆ Linear Regression (2D)") print("2. ๐Ÿ“Š K-Means Clustering (2D)") print("3. ๐ŸŽฏ Simple Prediction Model") print("4. ๐Ÿ“‰ Data Correlation Analysis") print("5. ๐Ÿ”„ Data Normalization")

choice = input("Choose ML operation (1-5): ")

if choice == '1':  # Linear Regression
    print("๐Ÿ“ˆ Linear Regression - Enter X,Y data pairs:")
    n = int(input("How many data points? "))
    x_vals, y_vals = [], []
    
    for i in range(n):
        x = float(input(f"X{i+1}: "))
        y = float(input(f"Y{i+1}: "))
        x_vals.append(x)
        y_vals.append(y)
    
    # Calculate slope and intercept
    n = len(x_vals)
    sum_x = sum(x_vals)
    sum_y = sum(y_vals)
    sum_xy = sum(x*y for x, y in zip(x_vals, y_vals))
    sum_x2 = sum(x*x for x in x_vals)
    
    slope = (n*sum_xy - sum_x*sum_y) / (n*sum_x2 - sum_x*sum_x)
    intercept = (sum_y - slope*sum_x) / n
    
    # Calculate R-squared
    y_mean = sum_y / n
    ss_tot = sum((y - y_mean)**2 for y in y_vals)
    ss_res = sum((y - (slope*x + intercept))**2 for x, y in zip(x_vals, y_vals))
    r_squared = 1 - (ss_res / ss_tot) if ss_tot != 0 else 1
    
    result = f"๐Ÿ“Š y = {slope:.4f}x + {intercept:.4f}, Rยฒ = {r_squared:.4f}"
    print(result)
    save_to_history("Linear Regression", [x_vals, y_vals], result)

elif choice == '2':  # K-Means Clustering
    print("๐Ÿ“Š K-Means Clustering (2D):")
    n = int(input("How many points? "))
    points = []
    
    for i in range(n):
        x = float(input(f"Point {i+1} X: "))
        y = float(input(f"Point {i+1} Y: "))
        points.append([x, y])
    
    k = int(input("Number of clusters (k): "))
    
    # Simple k-means implementation
    centroids = [[random.uniform(min(p[0] for p in points), max(p[0] for p in points)),
                 random.uniform(min(p[1] for p in points), max(p[1] for p in points))] for _ in range(k)]
    
    for iteration in range(10):  # 10 iterations
        clusters = [[] for _ in range(k)]
        
        # Assign points to nearest centroid
        for point in points:
            distances = [math.sqrt((point[0]-c[0])**2 + (point[1]-c[1])**2) for c in centroids]
            cluster_idx = distances.index(min(distances))
            clusters[cluster_idx].append(point)
        
        # Update centroids
        for i in range(k):
            if clusters[i]:
                centroids[i] = [sum(p[0] for p in clusters[i])/len(clusters[i]),
                               sum(p[1] for p in clusters[i])/len(clusters[i])]
    
    print("๐ŸŽฏ Final Centroids:")
    for i, centroid in enumerate(centroids):
        print(f"  Cluster {i+1}: ({centroid[0]:.2f}, {centroid[1]:.2f})")
    
    save_to_history("K-Means Clustering", points, centroids)

def cryptography_operations(): """Cryptographic operations""" print("\n๐Ÿ” === Cryptography Operations ===") print("1. ๐Ÿ”— Hash Generation (MD5, SHA256)") print("2. ๐Ÿ”‘ Simple Caesar Cipher") print("3. ๐Ÿ“Š Base64 Encoding/Decoding") print("4. ๐ŸŽฒ Random Number Generation") print("5. ๐Ÿ”’ Simple XOR Encryption")

choice = input("Choose crypto operation (1-5): ")

if choice == '1':  # Hash Generation
    text = input("Enter text to hash: ")
    md5_hash = hashlib.md5(text.encode()).hexdigest()
    sha256_hash = hashlib.sha256(text.encode()).hexdigest()
    
    result = f"MD5: {md5_hash}\nSHA256: {sha256_hash}"
    print("๐Ÿ”— Hash Results:")
    print(result)
    save_to_history("Hash Generation", text, result)

elif choice == '2':  # Caesar Cipher
    text = input("Enter text: ")
    shift = int(input("Enter shift value: "))
    
    encrypted = ""
    for char in text:
        if char.isalpha():
            ascii_offset = 65 if char.isupper() else 97
            encrypted += chr((ord(char) - ascii_offset + shift) % 26 + ascii_offset)
        else:
            encrypted += char
    
    print(f"๐Ÿ”‘ Encrypted: {encrypted}")
    save_to_history("Caesar Cipher", [text, shift], encrypted)

elif choice == '3':  # Base64
    operation = input("Encode or Decode? (e/d): ").lower()
    text = input("Enter text: ")
    
    if operation == 'e':
        encoded = base64.b64encode(text.encode()).decode()
        print(f"๐Ÿ“Š Encoded: {encoded}")
        save_to_history("Base64 Encode", text, encoded)
    else:
        try:
            decoded = base64.b64decode(text).decode()
            print(f"๐Ÿ“Š Decoded: {decoded}")
            save_to_history("Base64 Decode", text, decoded)
        except:
            print("โŒ Invalid Base64 string!")

def advanced_statistics(): """Advanced statistical operations""" print("\n๐Ÿ“Š === Advanced Statistics ===") print("1. ๐Ÿ“ˆ Descriptive Statistics") print("2. ๐ŸŽฏ Probability Distributions") print("3. ๐Ÿ“‰ Regression Analysis") print("4. ๐Ÿ”„ Hypothesis Testing") print("5. ๐Ÿ“Š Data Visualization (ASCII)")

choice = input("Choose statistical operation (1-5): ")

if choice == '1':  # Descriptive Statistics
    numbers = get_multiple_numbers(3, 20)
    
    # Calculate advanced statistics
    n = len(numbers)
    mean_val = mean(numbers)
    median_val = median(numbers)
    
    # Quartiles
    sorted_nums = sorted(numbers)
    q1 = sorted_nums[n//4] if n >= 4 else sorted_nums[0]
    q3 = sorted_nums[3*n//4] if n >= 4 else sorted_nums[-1]
    iqr = q3 - q1
    
    # Variance and standard deviation
    variance = sum((x - mean_val)**2 for x in numbers) / n
    std_dev = math.sqrt(variance)
    
    # Skewness
    skewness = sum((x - mean_val)**3 for x in numbers) / (n * std_dev**3) if std_dev > 0 else 0
    
    result = f"""

๐Ÿ“Š DESCRIPTIVE STATISTICS: Count: {n} Mean: {mean_val:.4f} Median: {median_val:.4f} Q1: {q1:.4f}, Q3: {q3:.4f} IQR: {iqr:.4f} Variance: {variance:.4f} Std Dev: {std_dev:.4f} Skewness: {skewness:.4f} Range: {max(numbers) - min(numbers):.4f} """ print(result) save_to_history("Descriptive Statistics", numbers, result)

elif choice == '5':  # ASCII Data Visualization
    numbers = get_multiple_numbers(5, 15)
    
    print("\n๐Ÿ“Š ASCII Bar Chart:")
    max_val = max(numbers)
    scale = 50 / max_val if max_val > 0 else 1
    
    for i, num in enumerate(numbers):
        bar_length = int(num * scale)
        bar = "โ–ˆ" * bar_length
        print(f"Data {i+1:2d}: {num:6.2f} |{bar}")
    
    print(f"\nScale: Each โ–ˆ represents {max_val/50:.2f} units")
    save_to_history("ASCII Visualization", numbers, "Bar chart displayed")

def complex_number_operations(): """Advanced complex number operations""" print("\n๐Ÿ”ฎ === Complex Number Operations ===") print("1. โž• Complex Addition/Subtraction") print("2. โœ–๏ธ Complex Multiplication/Division") print("3. ๐Ÿ“ Polar Form Conversion") print("4. ๐ŸŒ€ Complex Roots") print("5. ๐ŸŽฏ Complex Functions")

choice = input("Choose complex operation (1-5): ")

if choice in ['1', '2']:
    print("Enter first complex number:")
    real1 = float(input("Real part: "))
    imag1 = float(input("Imaginary part: "))
    c1 = complex(real1, imag1)
    
    print("Enter second complex number:")
    real2 = float(input("Real part: "))
    imag2 = float(input("Imaginary part: "))
    c2 = complex(real2, imag2)
    
    if choice == '1':
        add_result = c1 + c2
        sub_result = c1 - c2
        result = f"Addition: {add_result}\nSubtraction: {sub_result}"
        print("๐Ÿ”ฎ Results:")
        print(result)
        save_to_history("Complex Addition/Subtraction", [c1, c2], result)
    
    else:  # choice == '2'
        mul_result = c1 * c2
        div_result = c1 / c2 if c2 != 0 else "undefined"
        result = f"Multiplication: {mul_result}\nDivision: {div_result}"
        print("๐Ÿ”ฎ Results:")
        print(result)
        save_to_history("Complex Multiplication/Division", [c1, c2], result)

elif choice == '3':  # Polar form
    real = float(input("Real part: "))
    imag = float(input("Imaginary part: "))
    c = complex(real, imag)
    
    magnitude = abs(c)
    phase = cmath.phase(c)
    phase_degrees = math.degrees(phase)
    
    result = f"Rectangular: {c}\nPolar: {magnitude:.4f} โˆ  {phase_degrees:.2f}ยฐ"
    print("๐Ÿ“ Polar Form:")
    print(result)
    save_to_history("Polar Conversion", c, result)

def high_precision_calculator(): """Ultra high-precision arithmetic""" print("\n๐ŸŽฏ === High-Precision Calculator ===") print("๐Ÿ”ฌ Working with up to 50 decimal places!") print("1. โž• High-Precision Addition") print("2. โœ–๏ธ High-Precision Multiplication") print("3. ๐Ÿ“ High-Precision Square Root") print("4. ๐Ÿ”ข High-Precision Power") print("5. ๐Ÿ“Š Fraction Operations")

choice = input("Choose precision operation (1-5): ")

if choice in ['1', '2', '4']:
    a = Decimal(input("Enter first number: "))
    b = Decimal(input("Enter second number: "))
    
    if choice == '1':
        result = a + b
        operation = "Addition"
    elif choice == '2':
        result = a * b
        operation = "Multiplication"
    else:  # choice == '4'
        result = a ** b
        operation = "Power"
    
    print(f"๐ŸŽฏ High-Precision {operation}: {result}")
    save_to_history(f"High-Precision {operation}", [str(a), str(b)], str(result))

elif choice == '3':
    a = Decimal(input("Enter number: "))
    result = a.sqrt()
    print(f"๐Ÿ”ฌ High-Precision Square Root: {result}")
    save_to_history("High-Precision Square Root", str(a), str(result))

elif choice == '5':
    print("Enter first fraction:")
    num1 = int(input("Numerator: "))
    den1 = int(input("Denominator: "))
    f1 = Fraction(num1, den1)
    
    print("Enter second fraction:")
    num2 = int(input("Numerator: "))
    den2 = int(input("Denominator: "))
    f2 = Fraction(num2, den2)
    
    result = f"""

๐Ÿ”ข Fraction Operations: Addition: {f1 + f2} Subtraction: {f1 - f2} Multiplication: {f1 * f2} Division: {f1 / f2} """ print(result) save_to_history("Fraction Operations", [f1, f2], result)

def ai_powered_calculator(): """AI-powered calculation suggestions""" print("\n๐Ÿค– === AI-Powered Calculator ===") print("๐Ÿง  Smart calculation suggestions and pattern recognition!") print("1. ๐ŸŽฏ Smart Number Pattern Detection") print("2. ๐Ÿ”ฎ Calculation Prediction") print("3. ๐Ÿงฎ Auto-Optimization Suggestions") print("4. ๐Ÿ“Š Mathematical Insights")

choice = input("Choose AI operation (1-4): ")

if choice == '1':  # Pattern Detection
    numbers = get_multiple_numbers(5, 15)
    
    # Detect arithmetic progression
    differences = [numbers[i+1] - numbers[i] for i in range(len(numbers)-1)]
    is_arithmetic = len(set(differences)) == 1
    
    # Detect geometric progression
    if all(n != 0 for n in numbers[:-1]):
        ratios = [numbers[i+1] / numbers[i] for i in range(len(numbers)-1)]
        is_geometric = len(set([round(r, 6) for r in ratios])) == 1
    else:
        is_geometric = False
    
    # Detect fibonacci-like sequence
    is_fibonacci_like = all(numbers[i] + numbers[i+1] == numbers[i+2] 
                           for i in range(len(numbers)-2)) if len(numbers) >= 3 else False
    
    patterns = []
    if is_arithmetic:
        patterns.append(f"๐Ÿ”ข Arithmetic Progression (d = {differences[0]})")
    if is_geometric:
        patterns.append(f"๐Ÿ“Š Geometric Progression (r = {ratios[0]:.4f})")
    if is_fibonacci_like:
        patterns.append("๐ŸŒ€ Fibonacci-like Sequence")
    
    if not patterns:
        patterns.append("๐Ÿค” No clear pattern detected")
    
    result = "๐ŸŽฏ Pattern Analysis:\n" + "\n".join(patterns)
    print(result)
    save_to_history("Pattern Detection", numbers, result)

elif choice == '2':  # Calculation Prediction
    if len(calculation_history) >= 3:
        recent_ops = [entry['operation'] for entry in calculation_history[-3:]]
        most_common = max(set(recent_ops), key=recent_ops.count)
        
        suggestion = f"๐Ÿ”ฎ Based on your history, you might want to perform: {most_common}"
        print(suggestion)
        
        # Suggest optimal number ranges
        recent_inputs = []
        for entry in calculation_history[-5:]:
            if isinstance(entry['inputs'], list):
                if isinstance(entry['inputs'][0], (int, float)):
                    recent_inputs.extend([x for x in entry['inputs'] if isinstance(x, (int, float))])
        
        if recent_inputs:
            avg_magnitude = sum(abs(x) for x in recent_inputs) / len(recent_inputs)
            range_suggestion = f"๐Ÿ’ก Suggested number range: {avg_magnitude/2:.2f} to {avg_magnitude*2:.2f}"
            print(range_suggestion)
    else:
        print("๐Ÿค– Need more calculation history for predictions!")

def matrix_operations(): """Advanced matrix operations""" print("\n๐Ÿ”ข === Advanced Matrix Operations ===") print("1. โž• Matrix Addition") print("2. โœ–๏ธ Matrix Multiplication") print("3. ๐Ÿ“ Matrix Determinant (3x3)") print("4. ๐Ÿ”„ Matrix Transpose") print("5. ๐ŸŽฏ Matrix Inverse") print("6. ๐ŸŒŸ Eigenvalues (2x2)")

choice = input("Choose matrix operation (1-6): ")

def get_matrix(size):
    matrix = []
    print(f"Enter {size}x{size} matrix:")
    for i in range(size):
        row = []
        for j in range(size):
            val = float(input(f"Element [{i+1}][{j+1}]: "))
            row.append(val)
        matrix.append(row)
    return matrix

if choice == '3':  # 3x3 Determinant
    matrix = get_matrix(3)
    
    # Calculate 3x3 determinant
    det = (matrix[0][0] * (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1]) -
           matrix[0][1] * (matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0]) +
           matrix[0][2] * (matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]))
    
    print(f"๐Ÿ“ 3x3 Determinant: {det}")
    save_to_history("3x3 Matrix Determinant", matrix, det)

elif choice == '6':  # Eigenvalues for 2x2
    matrix = get_matrix(2)
    a, b, c, d = matrix[0][0], matrix[0][1], matrix[1][0], matrix[1][1]
    
    # Calculate eigenvalues for 2x2 matrix
    trace = a + d
    det = a * d - b * c
    discriminant = trace**2 - 4*det
    
    if discriminant >= 0:
        lambda1 = (trace + math.sqrt(discriminant)) / 2
        lambda2 = (trace - math.sqrt(discriminant)) / 2
        result = f"๐ŸŒŸ Eigenvalues: ฮปโ‚ = {lambda1:.4f}, ฮปโ‚‚ = {lambda2:.4f}"
    else:
        real_part = trace / 2
        imag_part = math.sqrt(-discriminant) / 2
        result = f"๐ŸŒŸ Complex Eigenvalues: ฮปโ‚ = {real_part:.4f} + {imag_part:.4f}i, ฮปโ‚‚ = {real_part:.4f} - {imag_part:.4f}i"
    
    print(result)
    save_to_history("Matrix Eigenvalues", matrix, result)

def equation_solver(): """Advanced equation solver""" print("\n๐Ÿงฎ === Advanced Equation Solver ===") print("1. ๐Ÿ“ Quadratic Equation") print("2. ๐Ÿ“Š Cubic Equation") print("3. ๐Ÿ”ข System of Linear Equations (3x3)") print("4. ๐ŸŒ€ Transcendental Equations (Newton's Method)")

choice = input("Choose equation type (1-4): ")

if choice == '2':  # Cubic Equation
    print("Solve axยณ + bxยฒ + cx + d = 0")
    a = float(input("Enter a: "))
    b = float(input("Enter b: "))
    c = float(input("Enter c: "))
    d = float(input("Enter d: "))
    
    # Simplified cubic solver (real root approximation)
    def cubic_function(x):
        return a*x**3 + b*x**2 + c*x + d
    
    def cubic_derivative(x):
        return 3*a*x**2 + 2*b*x + c
    
    # Newton's method for one real root
    x = 1.0  # Initial guess
    for _ in range(20):
        fx = cubic_function(x)
        if abs(fx) < 1e-10:
            break
        fpx = cubic_derivative(x)
        if fpx == 0:
            break
        x = x - fx / fpx
    
    result = f"๐Ÿ”ข Approximate real root: x โ‰ˆ {x:.6f}"
    print(result)
    save_to_history("Cubic Equation", [a, b, c, d], result)

def basic_operations(): print("\nโž• Basic Operations:") print("1. Add") print("2. Subtract") print("3. Multiply") print("4. Divide") choice = input("Choose operation (1-4): ")

a = float(input("Enter first number: "))
b = float(input("Enter second number: "))

operations = {
    '1': (operator.add, "Addition"),
    '2': (operator.sub, "Subtraction"),
    '3': (operator.mul, "Multiplication"),
    '4': (operator.truediv, "Division")
}

if choice in operations:
    op_func, op_name = operations[choice]
    if choice == '4' and b == 0:
        print("โŒ Error: Division by zero!")
        return
    result = op_func(a, b)
    print("๐ŸŽฏ Result:", result)
    save_to_history(op_name, [a, b], result)
else:
    print("โŒ Invalid choice!")

def bulk_operations(): print("\n๐Ÿ“Š Bulk Operations (1-20 numbers):") print("1. Sum all numbers") print("2. Product of all numbers") print("3. Average (mean)") print("4. Median") print("5. Mode") print("6. Maximum") print("7. Minimum") print("8. Range (max - min)") print("9. Standard deviation") print("10. Square root of each number")

choice = input("Choose operation (1-10): ")
numbers = get_multiple_numbers(1, 20)

operations = {
    '1': ("Sum", sum(numbers)),
    '2': ("Product", math.prod(numbers)),
    '3': ("Average", mean(numbers)),
    '4': ("Median", median(numbers)),
    '6': ("Maximum", max(numbers)),
    '7': ("Minimum", min(numbers)),
    '8': ("Range", max(numbers) - min(numbers)),
}

if choice in operations:
    op_name, result = operations[choice]
    print(f"๐ŸŽฏ {op_name}: {result}")
    save_to_history(f"Bulk {op_name}", numbers, result)
elif choice == '5':
    try:
        result = mode(numbers)
        print(f"๐ŸŽฏ Mode: {result}")
        save_to_history("Bulk Mode", numbers, result)
    except:
        print("โŒ No mode found (all numbers are unique)")
elif choice == '9':
    mean_val = mean(numbers)
    variance = sum((x - mean_val) ** 2 for x in numbers) / len(numbers)
    std_dev = math.sqrt(variance)
    print(f"๐ŸŽฏ Standard deviation: {std_dev}")
    save_to_history("Bulk Standard Deviation", numbers, std_dev)
elif choice == '10':
    results = [math.sqrt(abs(num)) for num in numbers]
    print("๐ŸŽฏ Square roots:")
    for i, result in enumerate(results):
        print(f"  โˆš|{numbers[i]}| = {result}")
    save_to_history("Bulk Square Roots", numbers, results)
else:
    print("โŒ Invalid choice!")

def advanced_operations(): print("\n๐Ÿ”ฌ Advanced Operations:") print("1. Square Root") print("2. Power") print("3. Factorial") print("4. Trigonometric Functions") print("5. Logarithms") print("6. Hyperbolic Functions") print("7. Inverse Trigonometric") print("8. Gamma Function")

choice = input("Choose operation (1-8): ")

if choice == '1':
    x = float(input("Enter number: "))
    result = math.sqrt(abs(x))
    print("๐ŸŽฏ Square root:", result)
    save_to_history("Square Root", x, result)
elif choice == '4':
    angle = float(input("Enter angle in degrees: "))
    rad = math.radians(angle)
    sin_val = math.sin(rad)
    cos_val = math.cos(rad)
    tan_val = math.tan(rad)
    result = f"sin({angle}ยฐ) = {sin_val:.6f}, cos({angle}ยฐ) = {cos_val:.6f}, tan({angle}ยฐ) = {tan_val:.6f}"
    print("๐ŸŽฏ Trigonometric values:")
    print(result)
    save_to_history("Trigonometric", angle, result)
elif choice == '8':
    x = float(input("Enter number: "))
    result = math.gamma(x)
    print("๐ŸŽฏ Gamma function:", result)
    save_to_history("Gamma Function", x, result)

def calculator_app(): print("๐Ÿš€ Welcome to the ULTRA-ADVANCED AI Calculator!") print("๐Ÿง  Powered by Machine Learning, Cryptography, and High-Precision Computing!")

while True:
    print("\n" + "="*60)
    print("๐ŸŒŸ === ULTRA-ADVANCED AI CALCULATOR SUITE ===")
    print("="*60)
    print("๐Ÿ“Š 1. Basic Operations (2 numbers)")
    print("๐Ÿ”ฌ 2. Advanced Operations (1 number)")
    print("๐Ÿ“ˆ 3. Bulk Operations (1-20 numbers)")
    print("โšก 4. Quick Sum (1-20 numbers)")
    print("๐Ÿ”ข 5. Advanced Matrix Operations")
    print("๐Ÿงฎ 6. Advanced Equation Solver")
    print("๐Ÿค– 7. Machine Learning Operations")
    print("๐Ÿ” 8. Cryptography Operations")
    print("๐Ÿ“Š 9. Advanced Statistics")
    print("๐Ÿ”ฎ 10. Complex Number Operations")
    print("๐ŸŽฏ 11. High-Precision Calculator")
    print("๐Ÿง  12. AI-Powered Calculator")
    print("๐Ÿ“œ 13. View History")
    print("๐Ÿ’พ 14. Export History")
    print("๐Ÿ—‘๏ธ 15. Clear History")
    print("๐Ÿšช 16. Exit")
    print("="*60)
    
    choice = input("๐ŸŽฎ Enter your choice (1-16): ")

    try:
        if choice == '1':
            basic_operations()
        elif choice == '2':
            advanced_operations()
        elif choice == '3':
            bulk_operations()
        elif choice == '4':
            quick_sum()
        elif choice == '5':
            matrix_operations()
        elif choice == '6':
            equation_solver()
        elif choice == '7':
            machine_learning_operations()
        elif choice == '8':
            cryptography_operations()
        elif choice == '9':
            advanced_statistics()
        elif choice == '10':
            complex_number_operations()
        elif choice == '11':
            high_precision_calculator()
        elif choice == '12':
            ai_powered_calculator()
        elif choice == '13':
            show_history()
        elif choice == '14':
            export_history()
        elif choice == '15':
            clear_history()
        elif choice == '16':
            print("๐ŸŽ‰ Thank you for using the Ultra-Advanced AI Calculator!")
            print("๐Ÿš€ Keep calculating and exploring mathematics!")
            break
        else:
            print("โŒ Invalid option. Try again!")
    
    except Exception as e:
        print(f"โŒ An error occurred: {e}")
        print("๐Ÿ”ง Please try again with valid inputs.")

Run the ultimate calculator

if name == "main": calculator_app()

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published