You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Have I written custom code (as opposed to using a stock example script provided in Keras): no
OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 20.04 LTS
TensorFlow installed from (source or binary): binary
TensorFlow version (use command below): 2.6.0
Python version: 3.8.10
Bazel version (if compiling from source): N/A
GPU model and memory: NVIDIA GeForce RTX 2070 with Max-Q Design
Describe the problem.
I encountered a CI problem with a build job today that wasn't happening yesterday. So I checked the difference in terms of dependency and the only difference was keras. So I inspected the traceback and ended up tracking the import from keras that causes trouble. Please note this is a big issue, because the original call was from tensorflow from tensorflow.keras.utils import img_to_array and the underlying troubling import is from keras.
Describe the current behavior.
Running the standalone code throws a AlreadyExistsError
Describe the expected behavior.
Not raising an error.
Do you want to contribute a PR? (yes/no): happy to do so, but I'm not sure how to solve this
Briefly describe your candidate solution(if contributing):
Standalone code to reproduce the issue.
fromkerasimportoptimizers
Source code / logs.
---------------------------------------------------------------------------
AlreadyExistsError Traceback (most recent call last)
<ipython-input-1-d1acaf7a1f6f> in <module>
----> 1 from keras import optimizers
~/miniconda3/lib/python3.8/site-packages/keras/__init__.py in <module>
23
24 # See b/110718070#comment18 for more details about this import.
---> 25 from keras import models
26
27 from keras.engine.input_layer import Input
~/miniconda3/lib/python3.8/site-packages/keras/models.py in <module>
18 import tensorflow.compat.v2 as tf
19 from keras import backend
---> 20 from keras import metrics as metrics_module
21 from keras import optimizer_v1
22 from keras.engine import functional
~/miniconda3/lib/python3.8/site-packages/keras/metrics.py in <module>
24
25 import numpy as np
---> 26 from keras import activations
27 from keras import backend
28 from keras.engine import base_layer
~/miniconda3/lib/python3.8/site-packages/keras/activations.py in <module>
18
19 from keras import backend
---> 20 from keras.layers import advanced_activations
21 from keras.utils.generic_utils import deserialize_keras_object
22 from keras.utils.generic_utils import serialize_keras_object
~/miniconda3/lib/python3.8/site-packages/keras/layers/__init__.py in <module>
21
22 # Generic layers.
---> 23 from keras.engine.input_layer import Input
24 from keras.engine.input_layer import InputLayer
25 from keras.engine.input_spec import InputSpec
~/miniconda3/lib/python3.8/site-packages/keras/engine/input_layer.py in <module>
19 from keras import backend
20 from keras.distribute import distributed_training_utils
---> 21 from keras.engine import base_layer
22 from keras.engine import keras_tensor
23 from keras.engine import node as node_module
~/miniconda3/lib/python3.8/site-packages/keras/engine/base_layer.py in <module>
41 from keras.engine import node as node_module
42 from keras.mixed_precision import autocast_variable
---> 43 from keras.mixed_precision import loss_scale_optimizer
44 from keras.mixed_precision import policy
45 from keras.saving.saved_model import layer_serialization
~/miniconda3/lib/python3.8/site-packages/keras/mixed_precision/loss_scale_optimizer.py in <module>
16
17 from keras import backend
---> 18 from keras import optimizers
19 from keras.mixed_precision import loss_scale as keras_loss_scale_module
20 from keras.optimizer_v2 import optimizer_v2
~/miniconda3/lib/python3.8/site-packages/keras/optimizers.py in <module>
24 from keras.optimizer_v1 import Optimizer
25 from keras.optimizer_v1 import TFOptimizer
---> 26 from keras.optimizer_v2 import adadelta as adadelta_v2
27 from keras.optimizer_v2 import adagrad as adagrad_v2
28 from keras.optimizer_v2 import adam as adam_v2
~/miniconda3/lib/python3.8/site-packages/keras/optimizer_v2/adadelta.py in <module>
20 import numpy as np
21 from keras import backend_config
---> 22 from keras.optimizer_v2 import optimizer_v2
23 from tensorflow.python.util.tf_export import keras_export
24
~/miniconda3/lib/python3.8/site-packages/keras/optimizer_v2/optimizer_v2.py in <module>
34
35
---> 36 keras_optimizers_gauge = tf.__internal__.monitoring.BoolGauge(
37 "/tensorflow/api/keras/optimizers", "keras optimizer usage", "method")
38
~/miniconda3/lib/python3.8/site-packages/tensorflow/python/eager/monitoring.py in __init__(self, name, description, *labels)
358 *labels: The label list of the new metric.
359 """
--> 360 super(BoolGauge, self).__init__('BoolGauge', _bool_gauge_methods,
361 len(labels), name, description, *labels)
362
~/miniconda3/lib/python3.8/site-packages/tensorflow/python/eager/monitoring.py in __init__(self, metric_name, metric_methods, label_length, *args)
133 self._metric_name, len(self._metric_methods)))
134
--> 135 self._metric = self._metric_methods[self._label_length].create(*args)
136
137 def __del__(self):
AlreadyExistsError: Another metric with the same name already exists.
The text was updated successfully, but these errors were encountered:
System information.
Describe the problem.
I encountered a CI problem with a build job today that wasn't happening yesterday. So I checked the difference in terms of dependency and the only difference was keras. So I inspected the traceback and ended up tracking the import from keras that causes trouble. Please note this is a big issue, because the original call was from tensorflow
from tensorflow.keras.utils import img_to_array
and the underlying troubling import is from keras.Describe the current behavior.
Running the standalone code throws a
AlreadyExistsError
Describe the expected behavior.
Not raising an error.
Standalone code to reproduce the issue.
Source code / logs.
The text was updated successfully, but these errors were encountered: