Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BPF register bounds logic and testing improvements #5846

Closed

Conversation

kernel-patches-daemon-bpf[bot]
Copy link

Pull request for series with
subject: BPF register bounds logic and testing improvements
version: 1
url: https://patchwork.kernel.org/project/netdevbpf/list/?series=794450

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: bb6a888
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=794450
version: 1

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 0e133a1
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=794450
version: 1

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 0e133a1
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=794562
version: 2

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 6bd5e16
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=794562
version: 2

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 6bd5e16
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=794562
version: 2

@kernel-patches-daemon-bpf
Copy link
Author

At least one diff in series https://patchwork.kernel.org/project/netdevbpf/list/?series=794562 expired. Closing PR.

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 6bd5e16
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=794908
version: 3

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 69a1917
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=795459
version: 4

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: b63dadd
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=795459
version: 4

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: dedd6c8
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=795459
version: 4

@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 99b29a4
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=795459
version: 4

When determining if if/else branch will always or never be taken, use
signed range knowledge in addition to currently used unsigned range knowledge.
If either signed or unsigned range suggests that condition is
always/never taken, return corresponding branch_taken verdict.

Current use of unsigned range for this seems arbitrary and unnecessarily
incomplete. It is possible for *signed* operations to be performed on
register, which could "invalidate" unsigned range for that register. In
such case branch_taken will be artificially useless, even if we can
still tell that some constant is outside of register value range based
on its signed bounds.

veristat-based validation shows zero differences across selftests,
Cilium, and Meta-internal BPF object files.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Add smin/smax derivation from appropriate umin/umax values. Previously the
logic was surprisingly asymmetric, trying to derive umin/umax from smin/smax
(if possible), but not trying to do the same in the other direction. A simple
addition to __reg64_deduce_bounds() fixes this.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Add handling of a bunch of possible cases which allows deducing extra
information about subregister bounds, both u32 and s32, from full register
u64/s64 bounds.

Also add smin32/smax32 bounds derivation from corresponding umin32/umax32
bounds, similar to what we did with smin/smax from umin/umax derivation in
previous patch.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Add a few interesting cases in which we can tighten 64-bit bounds based
on newly learnt information about 32-bit bounds. E.g., when full u64/s64
registers are used in BPF program, and then eventually compared as
u32/s32. The latter comparison doesn't change the value of full
register, but it does impose new restrictions on possible lower 32 bits
of such full registers. And we can use that to derive additional full
register bounds information.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
There are cases (caught by subsequent reg_bounds tests in selftests/bpf)
where performing one round of __reg_deduce_bounds() doesn't propagate
all the information from, say, s32 to u32 bounds and than from newly
learned u32 bounds back to u64 and s64. So perform __reg_deduce_bounds()
twice to make sure such derivations are propagated fully after
reg_bounds_sync().

One such example is test `(s64)[0xffffffff00000001; 0] (u64)<
0xffffffff00000000` from selftest patch from this patch set. It demonstrates an
intricate dance of u64 -> s64 -> u64 -> u32 bounds adjustments, which requires
two rounds of __reg_deduce_bounds(). Here are corresponding refinement log from
selftest, showing evolution of knowledge.

REFINING (FALSE R1) (u64)SRC=[0xffffffff00000000; U64_MAX] (u64)DST_OLD=[0; U64_MAX] (u64)DST_NEW=[0xffffffff00000000; U64_MAX]
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000000; U64_MAX] (s64)DST_OLD=[0xffffffff00000001; 0] (s64)DST_NEW=[0xffffffff00000001; -1]
REFINING (FALSE R1) (s64)SRC=[0xffffffff00000001; -1] (u64)DST_OLD=[0xffffffff00000000; U64_MAX] (u64)DST_NEW=[0xffffffff00000001; U64_MAX]
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000001; U64_MAX] (u32)DST_OLD=[0; U32_MAX] (u32)DST_NEW=[1; U32_MAX]

R1 initially has smin/smax set to [0xffffffff00000001; -1], while umin/umax is
unknown. After (u64)< comparison, in FALSE branch we gain knowledge that
umin/umax is [0xffffffff00000000; U64_MAX]. That causes smin/smax to learn that
zero can't happen and upper bound is -1. Then smin/smax is adjusted from
umin/umax improving lower bound from 0xffffffff00000000 to 0xffffffff00000001.
And then eventually umin32/umax32 bounds are drived from umin/umax and become
[1; U32_MAX].

Selftest in the last patch is actually implementing a multi-round fixed-point
convergence logic, but so far all the tests are handled by two rounds of
reg_bounds_sync() on the verifier state, so we keep it simple for now.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
@kernel-patches-daemon-bpf
Copy link
Author

Upstream branch: 06646da
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=795459
version: 4

When performing 32-bit conditional operation operating on lower 32 bits
of a full 64-bit register, register full value isn't changed. We just
potentially gain new knowledge about that register's lower 32 bits.

Unfortunately, __reg_combine_{32,64}_into_{64,32} logic that
reg_set_min_max() performs as a last step, can lose information in some
cases due to __mark_reg64_unbounded() and __reg_assign_32_into_64().
That's bad and completely unnecessary. Especially __reg_assign_32_into_64()
looks completely out of place here, because we are not performing
zero-extending subregister assignment during conditional jump.

So this patch replaced __reg_combine_* with just a normal
reg_bounds_sync() which will do a proper job of deriving u64/s64 bounds
from u32/s32, and vice versa (among all other combinations).

__reg_combine_64_into_32() is also used in one more place,
coerce_reg_to_size(), while handling 1- and 2-byte register loads.
Looking into this, it seems like besides marking subregister as
unbounded before performing reg_bounds_sync(), we were also performing
deduction of smin32/smax32 and umin32/umax32 bounds from respective
smin/smax and umin/umax bounds. It's now redundant as reg_bounds_sync()
performs all the same logic more generically (e.g., without unnecessary
assumption that upper 32 bits of full register should be zero).

Long story short, we remove __reg_combine_64_into_32() completely, and
coerce_reg_to_size() now only does resetting subreg to unbounded and then
performing reg_bounds_sync() to recover as much information as possible
from 64-bit umin/umax and smin/smax bounds, set explicitly in
coerce_reg_to_size() earlier.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Add test to validate BPF verifier's register range bounds tracking logic.

The main bulk is a lot of auto-generated tests based on a small set of
seed values for lower and upper 32 bits of full 64-bit values.
Currently we validate only range vs const comparisons, but the idea is
to start validating range over range comparisons in subsequent patch set.

When setting up initial register ranges we treat registers as one of
u64/s64/u32/s32 numeric types, and then independently perform conditional
comparisons based on a potentially different u64/s64/u32/s32 types. This
tests lots of tricky cases of deriving bounds information across
different numeric domains.

Given there are lots of auto-generated cases, we guard them behind
SLOW_TESTS=1 envvar requirement, and skip them altogether otherwise.
With current full set of upper/lower seed value, all supported
comparison operators and all the combinations of u64/s64/u32/s32 number
domains, we get about 7.7 million tests, which run in about 35 minutes
on my local qemu instance. So it's something that can be run manually
for exhaustive check in a reasonable time, and perhaps as a nightly CI
test, but certainly is too slow to run as part of a default test_progs run.

We also add a small set of tricky conditions that came up during
development and triggered various bugs or corner cases in either
selftest's reimplementation of range bounds logic or in verifier's logic
itself. These are fast enough to be run as part of normal test_progs
test run and are great for a quick sanity checking.

Let's take a look at test output to understand what's going on:

  $ sudo ./test_progs -t reg_bounds_crafted
  #191/1   reg_bounds_crafted/(u64)[0; 0xffffffff] (u64)< 0:OK
  ...
  #191/115 reg_bounds_crafted/(u64)[0; 0x17fffffff] (s32)< 0:OK
  ...
  #191/137 reg_bounds_crafted/(u64)[0xffffffff; 0x100000000] (u64)== 0:OK

Each test case is uniquely and fully described by this generated string.
E.g.: "(u64)[0; 0x17fffffff] (s32)< 0". This means that we
initialize a register (R6) in such a way that verifier knows that it can
have a value in [(u64)0; (u64)0x17fffffff] range. Another
register (R7) is also set up as u64, but this time a constant (zero in
this case). They then are compared using 32-bit signed < operation.
Resulting TRUE/FALSE branches are evaluated (including cases where it's
known that one of the branches will never be taken, in which case we
validate that verifier also determines this as a dead code). Test
validates that verifier's final register state matches expected state
based on selftest's own reg_state logic, implemented from scratch for
cross-checking purposes.

These test names can be conveniently used for further debugging, and if -vv
verboseness is requested we can get a corresponding verifier log (with
mark_precise logs filtered out as irrelevant and distracting). Example below is
slightly redacted for brevity, omitting irrelevant register output in
some places, marked with [...].

  $ sudo ./test_progs -a 'reg_bounds_crafted/(u32)[0; U32_MAX] (s32)< -1' -vv
  ...
  VERIFIER LOG:
  ========================
  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (05) goto pc+2
  3: (85) call bpf_get_current_pid_tgid#14      ; R0_w=scalar()
  4: (bc) w6 = w0                       ; R0_w=scalar() R6_w=scalar(smin=0,smax=umax=4294967295,var_off=(0x0; 0xffffffff))
  5: (85) call bpf_get_current_pid_tgid#14      ; R0_w=scalar()
  6: (bc) w7 = w0                       ; R0_w=scalar() R7_w=scalar(smin=0,smax=umax=4294967295,var_off=(0x0; 0xffffffff))
  7: (b4) w1 = 0                        ; R1_w=0
  8: (b4) w2 = -1                       ; R2=4294967295
  9: (ae) if w6 < w1 goto pc-9
  9: R1=0 R6=scalar(smin=0,smax=umax=4294967295,var_off=(0x0; 0xffffffff))
  10: (2e) if w6 > w2 goto pc-10
  10: R2=4294967295 R6=scalar(smin=0,smax=umax=4294967295,var_off=(0x0; 0xffffffff))
  11: (b4) w1 = -1                      ; R1_w=4294967295
  12: (b4) w2 = -1                      ; R2_w=4294967295
  13: (ae) if w7 < w1 goto pc-13        ; R1_w=4294967295 R7=4294967295
  14: (2e) if w7 > w2 goto pc-14
  14: R2_w=4294967295 R7=4294967295
  15: (bc) w0 = w6                      ; [...] R6=scalar(id=1,smin=0,smax=umax=4294967295,var_off=(0x0; 0xffffffff))
  16: (bc) w0 = w7                      ; [...] R7=4294967295
  17: (ce) if w6 s< w7 goto pc+3        ; R6=scalar(id=1,smin=0,smax=umax=4294967295,smin32=-1,var_off=(0x0; 0xffffffff)) R7=4294967295
  18: (bc) w0 = w6                      ; [...] R6=scalar(id=1,smin=0,smax=umax=4294967295,smin32=-1,var_off=(0x0; 0xffffffff))
  19: (bc) w0 = w7                      ; [...] R7=4294967295
  20: (95) exit

  from 17 to 21: [...]
  21: (bc) w0 = w6                      ; [...] R6=scalar(id=1,smin=umin=umin32=2147483648,smax=umax=umax32=4294967294,smax32=-2,var_off=(0x80000000; 0x7fffffff))
  22: (bc) w0 = w7                      ; [...] R7=4294967295
  23: (95) exit

  from 13 to 1: [...]
  1: [...]
  1: (b7) r0 = 0                        ; R0_w=0
  2: (95) exit
  processed 24 insns (limit 1000000) max_states_per_insn 0 total_states 2 peak_states 2 mark_read 1
  =====================

Verifier log above is for `(u32)[0; U32_MAX] (s32)< -1` use cases, where u32
range is used for initialization, followed by signed < operator. Note
how we use w6/w7 in this case for register initialization (it would be
R6/R7 for 64-bit types) and then `if w6 s< w7` for comparison at
instruction #17. It will be `if R6 < R7` for 64-bit unsigned comparison.
Above example gives a good impression of the overall structure of a BPF
programs generated for reg_bounds tests.

In the future, this "framework" can be extended to test not just
conditional jumps, but also arithmetic operations. Adding randomized
testing is another possibility.

Some implementation notes. We basically have our own generics-like
operations on numbers, where all the numbers are stored in u64, but how
they are interpreted is passed as runtime argument enum num_t. Further,
`struct range` represents a bounds range, and those are collected
together into a minimal `struct reg_state`, which collects range bounds
across all four numberical domains: u64, s64, u32, s64.

Based on these primitives and `enum op` representing possible
conditional operation (<, <=, >, >=, ==, !=), there is a set of generic
helpers to perform "range arithmetics", which is used to maintain struct
reg_state. We simulate what verifier will do for reg bounds of R6 and R7
registers using these range and reg_state primitives. Simulated
information is used to determine branch taken conclusion and expected
exact register state across all four number domains.

Implementation of "range arithmetics" is more generic than what verifier
is currently performing: it allows range over range comparisons and
adjustments. This is the intended end goal of this work and verifier
logic is expected to be enhanced to range vs range operations in
subsequent patch set.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
@kernel-patches-daemon-bpf
Copy link
Author

At least one diff in series https://patchwork.kernel.org/project/netdevbpf/list/?series=795459 irrelevant now. Closing PR.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant