Skip to content
This repository has been archived by the owner on Sep 8, 2024. It is now read-only.

keskinm/fashion-mnist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FASHION MNIST

Classifier Preprocessing Fashion test accuracy Inference time (ms/image)
2 Conv+pooling ~168k params Normalization, Random cropping, Random Horizontal flip, BN 0.9056 0.3
5 Conv+pooling ~3M params Normalization, BN 0.913 1.1
VGG16 138M params minus 5 first convolution which are frozen Normalization 0.9369 4.5
Random cropping

The semantics of the image are preserved but the activation values of the conv net are different. The conv net learns to associate a broader range of spatial activations with a certain class label and improves the robustness of the feature detectors in conv nets.

Data Augmentation using Random Image Cropping and Patching for Deep CNNs Ryo Takahashi, Takashi Matsubara, Kuniaki Uehara

Args:

parser.add_argument('--model-type',
                    choices=['vgg', 'two_conv', 'five_conv'],
                    required=True,
                    help='')

parser.add_argument('-t',
                    '--test-model-path',
                    default=None,
                    type=str,
                    help='model path')

parser.add_argument('-r',
                    '--resume-model-path',
                    default=None,
                    type=str,
                    help='model path')

parser.add_argument('--train-batch-size',
                    default=50,
                    help='batch size for training with Adam')

parser.add_argument('--lr',
                    default=0.005,
                    type=float,
                    help='learning rate')

parser.add_argument('--train-epoch',
                    default=60,
                    type=int,
                    help='number of training epoch')

parser.add_argument('--seed',
                    default=42,
                    help='seed')

parser.add_argument('--save-dir',
                    default='./data',
                    help='saving metrics dir')

parser.add_argument('--optimizer',
                    choices=['adam', 'sgd'],
                    default='adam',
                    help='')

parser.add_argument('--dump-metrics-frequency',
                    metavar='Batch_n',
                    default='600',
                    type=int,
                    help='Dump metrics every Batch_n batches')

parser.add_argument(
                    '--threshold-validation-accuracy',
                    default='0.95',
                    type=float,
                    help='Threshold validation to reach for stopping training')

parser.add_argument(
                    '--num-threads',
                    default='0',
                    type=int,
                    help='Number of CPU to use for processing mini batches')

parser.add_argument('--scale',
                    action='store_true',
                    help='scale input in [0-1] range')

parser.add_argument(
                    '--standardize',
                    action='store_true',
                    help='Subtract each instance by mean of data and divide by std')

parser.add_argument('--augment',
                    action='store_true',
                    help='Use data augmentation')

parser.add_argument('--pretrained',
                    action='store_true',
                    help='Use pretrained weights for VGG')

parser.add_argument('--batch-norm',
                    action='store_true',
                    help='Use batch norm')

### Examples:

Training:

python -m eval --model-type two_conv --train-epoch 60

Test:

python -m eval --model-type two_conv --test-model-path ./data/models/two_conv.pth

About

Fashion MNIST classification

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages