jieba.NET是jieba中文分词的.NET版本(C#实现)。
当前版本为0.37.1,基于jieba 0.37,目标是提供与jieba一致的功能与接口,但以后可能会在jieba基础上提供其它扩展功能。关于jieba的实现思路,可以看看这篇wiki里提到的资料。
- 支持三种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义。具体来说,分词过程不会借助于词频查找最大概率路径,亦不会使用HMM;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
- 支持繁体分词
- 支持添加自定义词典和自定义词
- MIT 授权协议
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法
当前版本基于.NET Framework 4.5,可以手动引用项目,也可以通过NuGet添加引用:
PM> Install-Package jieba.NET
安装之后,在packages\jieba.NET目录下可以看到Resources目录,这里面是jieba.NET运行所需的词典及其它数据文件,最简单的配置方法是将整个Resources目录拷贝到程序集所在目录,这样jieba.NET会使用内置的默认配置值。如果希望将这些文件放在其它位置,则要在app.config或web.config中添加如下的配置项:
<appSettings>
<add key="MainDictFile" value="Resources\dict.txt" />
<add key="ProbTransFile" value="Resources\prob_trans.json" />
<add key="ProbEmitFile" value="Resources\prob_emit.json" />
<add key="PosProbStartFile" value="Resources\pos_prob_start.json" />
<add key="PosProbTransFile" value="Resources\pos_prob_trans.json" />
<add key="PosProbEmitFile" value="Resources\pos_prob_emit.json" />
<add key="CharStateTabFile" value="Resources\char_state_tab.json" />
<add key="StopWordsFile" value="Resources\stopwords.txt" />
<add key="IdfFile" value="Resources\idf.txt" />
</appSettings>
JiebaSegmenter.Cut
方法接受三个输入参数,text为待分词的字符串;cutAll指定是否采用全模式;hmm指定使用是否使用hmm模型切分未登录词;返回类型为IEnumerable<string>
JiebaSegmenter.CutForSearch
方法接受两个输入参数,text为待分词的字符串;hmm指定使用是否使用hmm模型;返回类型为IEnumerable<string>
代码示例
var segmenter = new JiebaSegmenter();
var segments = segmenter.Cut("我来到北京清华大学", cutAll: true);
Console.WriteLine("【全模式】:{0}", string.Join("/ ", segments));
segments = segmenter.Cut("我来到北京清华大学"); // 默认为精确模式
Console.WriteLine("【精确模式】:{0}", string.Join("/ ", segments));
segments = segmenter.Cut("他来到了网易杭研大厦"); // 默认为精确模式,同时也使用HMM模型
Console.WriteLine("【新词识别】:{0}", string.Join("/ ", segments));
segments = segmenter.CutForSearch("小明硕士毕业于中国科学院计算所,后在日本京都大学深造"); // 搜索引擎模式
Console.WriteLine("【搜索引擎模式】:{0}", string.Join("/ ", segments));
segments = segmenter.Cut("结过婚的和尚未结过婚的");
Console.WriteLine("【歧义消除】:{0}", string.Join("/ ", segments));
输出
【全模式】:我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】:我/ 来到/ 北京/ 清华大学
【新词识别】:他/ 来到/ 了/ 网易/ 杭研/ 大厦
【搜索引擎模式】:小明/ 硕士/ 毕业/ 于/ 中国/ 科学/ 学院/ 科学院/ 中国科学院/ 计算/ 计算所/ ,/ 后/ 在/ 日本/ 京都/ 大学/ 日本京都大学/ 深造
【歧义消除】:结过婚/ 的/ 和/ 尚未/ 结过婚/ 的
- 开发者可以指定自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
JiebaSegmenter.LoadUserDict("user_dict_file_path")
- 词典格式与主词典格式相同,即一行包含:词、词频(可省略)、词性(可省略),用空格隔开
- 词频省略时,分词器将使用自动计算出的词频保证该词被分出
如
创新办 3 i
云计算 5
凱特琳 nz
台中
机器学习 3
- 使用
JiebaSegmenter.AddWord(word, freq=0, tag=null)
可添加一个新词,或调整已知词的词频;若freq
不是正整数,则使用自动计算出的词频,计算出的词频可保证该词被分出来 - 使用
JiebaSegmenter.DeleteWord(word)
可移除一个词,使其不能被分出来
JiebaNet.Analyser.TfidfExtractor.ExtractTags(string text, int count = 20, IEnumerable<string> allowPos = null)
可从指定文本中抽取出关键词。JiebaNet.Analyser.TfidfExtractor.ExtractTagsWithWeight(string text, int count = 20, IEnumerable<string> allowPos = null)
可从指定文本中抽取关键词的同时得到其权重。- 关键词抽取基于逆向文件频率(IDF),组件内置一个IDF语料库,可以配置为其它自定义的语料库。
- 关键词抽取会过滤停用词(Stop Words),组件内置一个停用词语料库,这个语料库合并了NLTK的英文停用词和哈工大的中文停用词。
JiebaNet.Analyser.TextRankExtractor
与TfidfExtractor
相同的接口。需要注意的是,TextRankExtractor
默认情况下只提取名词和动词。- 以固定窗口大小(默认为5,通过Span属性调整)和词之间的共现关系构建图
JiebaNet.Segmenter.PosSeg.PosSegmenter
类可以在分词的同时,为每个词添加词性标注。- 词性标注采用和ictclas兼容的标记法,关于ictclas和jieba中使用的标记法列表,请参考:词性标记。
var posSeg = new PosSegmenter();
var s = "一团硕大无朋的高能离子云,在遥远而神秘的太空中迅疾地飘移";
var tokens = posSeg.Cut(s);
Console.WriteLine(string.Join(" ", tokens.Select(token => string.Format("{0}/{1}", token.Word, token.Flag))));
一团/m 硕大无朋/i 的/uj 高能/n 离子/n 云/ns ,/x 在/p 遥远/a 而/c 神秘/a 的/uj 太空/n 中/f 迅疾/z 地/uv 飘移/v
- 默认模式
var segmenter = new JiebaSegmenter();
var s = "永和服装饰品有限公司";
var tokens = segmenter.Tokenize(s);
foreach (var token in tokens)
{
Console.WriteLine("word {0,-12} start: {1,-3} end: {2,-3}", token.Word, token.StartIndex, token.EndIndex);
}
word 永和 start: 0 end: 2
word 服装 start: 2 end: 4
word 饰品 start: 4 end: 6
word 有限公司 start: 6 end: 10
- 搜索模式
var segmenter = new JiebaSegmenter();
var s = "永和服装饰品有限公司";
var tokens = segmenter.Tokenize(s, TokenizerMode.Search);
foreach (var token in tokens)
{
Console.WriteLine("word {0,-12} start: {1,-3} end: {2,-3}", token.Word, token.StartIndex, token.EndIndex);
}
word 永和 start: 0 end: 2
word 服装 start: 2 end: 4
word 饰品 start: 4 end: 6
word 有限 start: 6 end: 8
word 公司 start: 8 end: 10
word 有限公司 start: 6 end: 10
jiebaForLuceneNet项目提供了与Lucene.NET的简单集成,更多信息请看:jiebaForLuceneNet
jieba分词亦提供了其它的词典文件:
- 占用内存较小的词典文件 https://raw.githubusercontent.com/anderscui/jieba.NET/master/ExtraDicts/dict.txt.small
- 支持繁体分词更好的词典文件 https://raw.githubusercontent.com/anderscui/jieba.NET/master/ExtraDicts/dict.txt.big
- 全模式:2.5 MB/s
- 精确模式:1.1 MB/s
- 测试环境: Intel(R) Core(TM) i3-2120 CPU @ 3.30GHz;围城.txt(734KB)