This is a Computer Vision package that makes its easy to run Image processing and AI functions.
At the core it uses OpenCV and Mediapipe libraries.
pip install nkdcv-python
from nkdcv.FaceDetectionModule import FaceDetector
import cv2
cap = cv2.VideoCapture(0)
detector = FaceDetector()
while True:
success, img = cap.read()
img, bboxs = detector.findFaces(img)
if bboxs:
# bboxInfo - "id","bbox","score","center"
center = bboxs[0]["center"]
cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED)
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
from nkdcv.HandTrackingModule import HandDetector
import cv2
cap = cv2.VideoCapture(0)
detector = HandDetector(detectionCon=0.8, maxHands=2)
while True:
# Get image frame
success, img = cap.read()
# Find the hand and its landmarks
hands, img = detector.findHands(img) # with draw
# hands = detector.findHands(img, draw=False) # without draw
if hands:
# Hand 1
hand1 = hands[0]
lmList1 = hand1["lmList"] # List of 21 Landmark points
bbox1 = hand1["bbox"] # Bounding box info x,y,w,h
centerPoint1 = hand1['center'] # center of the hand cx,cy
handType1 = hand1["type"] # Handtype Left or Right
fingers1 = detector.fingersUp(hand1)
if len(hands) == 2:
# Hand 2
hand2 = hands[1]
lmList2 = hand2["lmList"] # List of 21 Landmark points
bbox2 = hand2["bbox"] # Bounding box info x,y,w,h
centerPoint2 = hand2['center'] # center of the hand cx,cy
handType2 = hand2["type"] # Hand Type "Left" or "Right"
fingers2 = detector.fingersUp(hand2)
# Find Distance between two Landmarks. Could be same hand or different hands
length, info, img = detector.findDistance(lmList1[8], lmList2[8], img) # with draw
# length, info = detector.findDistance(lmList1[8], lmList2[8]) # with draw
# Display
cv2.imshow("Image", img)
cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()
from nkdcv.PoseModule import PoseDetector
import cv2
cap = cv2.VideoCapture(0)
detector = PoseDetector()
while True:
success, img = cap.read()
img = detector.findPose(img)
lmList, bboxInfo = detector.findPosition(img, bboxWithHands=False)
if bboxInfo:
center = bboxInfo["center"]
cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED)
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
from nkdcv.FaceMeshModule import FaceMeshDetector
import cv2
cap = cv2.VideoCapture(0)
detector = FaceMeshDetector(maxFaces=2)
while True:
success, img = cap.read()
img, faces = detector.findFaceMesh(img)
if faces:
print(faces[0])
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
import nkdcv
import cv2
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
while True:
success, img = cap.read()
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgList = [img, img, imgGray, img, imgGray, img,imgGray, img, img]
stackedImg = nkdcv.stackImages(imgList, 3, 0.4)
cv2.imshow("stackedImg", stackedImg)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
import nkdcv
from nkdcv.HandTrackingModule import HandDetector
import cv2
cap = cv2.VideoCapture(0)
detector = HandDetector()
while True:
# Get image frame
success, img = cap.read()
# Find the hand and its landmarks
img = detector.findHands(img, draw=False)
lmList, bbox = detector.findPosition(img, draw=False)
if bbox:
# Draw Corner Rectangle
nkdcv.cornerRect(img, bbox)
# Display
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
import nkdcv
import cv2
fpsReader = nkdcv.FPS()
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
while True:
success, img = cap.read()
fps, img = fpsReader.update(img,pos=(50,80),color=(0,255,0),scale=5,thickness=5)
cv2.imshow("Image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()