Skip to content
/ TSMLDG Public

Generalizable Semantic Segmentation viaModel-agnostic Learning and Target-specificNormalization

Notifications You must be signed in to change notification settings

koncle/TSMLDG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TSMLDG

This is the source code of paper Generalizable Semantic Segmentation via Model-agnostic Learning and Target-specific Normalization).

img

Environment

Pytorch 1.2.0, GPU : 4 * V100,

DataSets

The training procedure needs gta5(G), synthia_rand_citys(S), idd(I), mapillary(M) and cityscapes(C). Please download them and put to the same folder which can be specified in paths.py. The folder tree structure is as follows:

├── GTA5
│   ├── images
│   ├── labels
│   ├── mapping.mat
│   └── split.mat
├── IDD
│   ├── codes
│   ├── gtFine
│   └── leftImg8bit
├── SYNTHIA
│   └── RAND_CITYSCAPES
├── cityscapes
│   ├── gtFine
│   ├── leftImg8bit
│   ├── train_fine.txt
│   └── val_fine.txt
├── mapillary
│   ├── README
│   ├── config.json
│   ├── demo.py
│   ├── requirements.txt
│   ├── testing
│   ├── training
│   └── validation

We also generated some synthetic images with CycleGAN, we download the style_ukyoe.pth, style_vangogh.pth, style_cezanne.pth pretrained models and transfered GTA5 dataset with these three pretrained models. The generated images are all put in the 'style_xxx' folder directly, which is the same as the images folder of GTA5.

Train the model

The model can be trained with train.py. If we want to train the MLDG with four source domains(G, S, I, M) and one target domain(C), we can parse these arguments.

python train.py --name exp --source GSIM --target C --train-num 1  

For more details, please refer to train.py

Test the model

The model can be trained with following command using eval.py.

python eval.py --name exp --targets C --test-size 16

Predict

python predict.py --name exp --targets C --test-size 16

About

Generalizable Semantic Segmentation viaModel-agnostic Learning and Target-specificNormalization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages