Skip to content

kozlov-alexey/sdc

 
 

Repository files navigation

HPAT

https://travis-ci.com/IntelPython/hpat.svg?branch=master https://coveralls.io/repos/github/IntelPython/hpat/badge.svg?branch=master

A compiler-based framework for big data in Python

High Performance Analytics Toolkit (HPAT) scales analytics/ML codes in Python to bare-metal cluster/cloud performance automatically. It compiles a subset of Python (Pandas/Numpy) to efficient parallel binaries with MPI, requiring only minimal code changes. HPAT is orders of magnitude faster than alternatives like Apache Spark.

HPAT's documentation can be found here.

Installing Binary Packages (conda)

conda install -c intel -c intel/label/test hpat

Example

Here is a Pi calculation example in HPAT:

import hpat
import numpy as np
import time

@hpat.jit
def calc_pi(n):
    t1 = time.time()
    x = 2 * np.random.ranf(n) - 1
    y = 2 * np.random.ranf(n) - 1
    pi = 4 * np.sum(x**2 + y**2 < 1) / n
    print("Execution time:", time.time()-t1, "\nresult:", pi)
    return pi

calc_pi(2 * 10**8)

Save this in a file named pi.py and run (on 8 cores):

mpiexec -n 8 python pi.py

This should demonstrate about 100x speedup compared to regular Python version without @hpat.jit and mpiexec.

References

These academic papers describe the underlying methods in HPAT:

Building HPAT from Source on Linux

We use Anaconda distribution of Python for setting up HPAT build environment.

If you do not have conda, we recommend using Miniconda3:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
chmod +x miniconda.sh
./miniconda.sh -b
export PATH=$HOME/miniconda3/bin:$PATH

It is possible to build HPAT via conda-build or setuptools. Follow one of the cases below to install HPAT and its dependencies on Linux.

Building on Linux with conda-build

PYVER=<3.6 or 3.7>
conda create -n CBLD python=$PYVER conda-build
source activate CBLD
git clone https://github.com/IntelPython/hpat
cd hpat
# build HPAT
conda build --python $PYVER --override-channels -c numba -c conda-forge -c defaults buildscripts/hpat-conda-recipe

Building on Linux with setuptools

PYVER=<3.6 or 3.7>
conda create -n HPAT -q -y -c numba -c conda-forge -c defaults numba mpich pyarrow=0.14.1 arrow-cpp=0.14.1 gcc_linux-64 gxx_linux-64 gfortran_linux-64 scipy pandas boost python=$PYVER
source activate HPAT
git clone https://github.com/IntelPython/hpat
cd hpat
# build HPAT
python setup.py install

In case of issues, reinstalling in a new conda environment is recommended.

Building HPAT from Source on Windows

Building HPAT on Windows requires Build Tools for Visual Studio 2019 (with component MSVC v140 - VS 2015 C++ build tools (v14.00)):

It is possible to build HPAT via conda-build or setuptools. Follow one of the cases below to install HPAT and its dependencies on Windows.

Building on Windows with conda-build

set PYVER=<3.6 or 3.7>
conda create -n CBLD -q -y python=%PYVER% conda-build conda-verify vc vs2015_runtime vs2015_win-64
conda activate CBLD
git clone https://github.com/IntelPython/hpat.git
cd hpat
conda build --python %PYVER% --override-channels -c numba -c defaults -c intel buildscripts\hpat-conda-recipe

Building on Windows with setuptools

conda create -n HPAT -c numba -c defaults -c intel python=<3.6 or 3.7> numba impi-devel pyarrow=0.14.1 arrow-cpp=0.14.1 scipy pandas boost
conda activate HPAT
git clone https://github.com/IntelPython/hpat.git
cd hpat
set INCLUDE=%INCLUDE%;%CONDA_PREFIX%\Library\include
set LIB=%LIB%;%CONDA_PREFIX%\Library\lib
%CONDA_PREFIX%\Library\bin\mpivars.bat quiet
python setup.py install

Troubleshooting Windows Build

  • If the cl compiler throws the error fatal error LNK1158: cannot run 'rc.exe', add Windows Kits to your PATH (e.g. C:\Program Files (x86)\Windows Kits\8.0\bin\x86).
  • Some errors can be mitigated by set DISTUTILS_USE_SDK=1.
  • For setting up Visual Studio, one might need go to registry at HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\VisualStudio\SxS\VS7, and add a string value named 14.0 whose data is C:\Program Files (x86)\Microsoft Visual Studio 14.0\.
  • Sometimes if the conda version or visual studio version being used are not latest then building HPAT can throw some vague error about a keyword used in a file. So make sure you are using the latest versions.

Running unit tests

conda install h5py
python hpat/tests/gen_test_data.py
python -m unittest

About

A compiler-based big data framework in Python

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 81.9%
  • C++ 15.8%
  • Jupyter Notebook 1.6%
  • C 0.2%
  • Dockerfile 0.2%
  • Shell 0.1%
  • Other 0.2%