A Generalized H-infinity Mixed Sensitivity Convex Approach to Multivariable Control Design Subject to Simultaneous Output and Input Loop-Breaking Specifications
Computes a H-infinity based Feedback Controller based on multiobjective constrained convex optimization.
Outline of steps for GMS problem setup:
-
Form the design plant:
- Define the original plant
- Integrator augmentation if needed
- Bilinear transformation values if needed
-
Select weighting functions:
- Tradeoff param rho
- W for obj
- W for constraint
-
Select optimization params:
- LB and UB
- Init point
- Maximum number of iterations
-
Select Youla/Zames parametrization:
- Select Youla or Zames
- Initial controller
-
Finite Dimensionality
- Basis params
-
Objective function: - sum/max/stacking
-
Find initial controller (Ko, F, L)
-
Youla parameterization
-
Find Initial Q parameter using initial controller (Ko, F, L)
-
Extract required data from problem setup
-
Vectorize the optimization problem
-
Optimization process
- define how subgradient is picked based on sum/max/stacking
-
form Q using the optimized variables and bases
-
form Controller K using the obtained Q
-
Inverse bilinear transformation if needed
-
Inverse of integrator augmentation if needed
-
Compute OL and CL maps