We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I run the following line
%run demoDSen2.py but got the following error as below. Please help.
%run demoDSen2.py
--------------------------------------------------------------------------- UnimplementedError Traceback (most recent call last) File ~\OneDrive - University of Canterbury\DSen2\testing\demoDSen2.py:47 45 print('Siberia') 46 im10, im20, imGT = readh5('S2B_MSIL1C_20170725_T43WFQ.mat', imGT=True) ---> 47 SR20 = DSen2_20(im10, im20) 48 # Evaluation against the ground truth on the 20m resolution bands (simulated) 49 print('DSen2:') File ~\OneDrive - University of Canterbury\DSen2\testing\supres.py:27, in DSen2_20(d10, d20, deep) 25 test = [p10, p20] 26 input_shape = ((4, None, None), (6, None, None)) ---> 27 prediction = _predict(test, input_shape, deep=deep) 28 images = recompose_images(prediction, border=border, size=d10.shape) 29 images *= SCALE File ~\OneDrive - University of Canterbury\DSen2\testing\supres.py:65, in _predict(test, input_shape, deep, run_60) 63 model.load_weights(predict_file) 64 print("Predicting using file: {}".format(predict_file)) ---> 65 prediction = model.predict(test, verbose=1) 66 return prediction File ~\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs) 67 filtered_tb = _process_traceback_frames(e.__traceback__) 68 # To get the full stack trace, call: 69 # `tf.debugging.disable_traceback_filtering()` ---> 70 raise e.with_traceback(filtered_tb) from None 71 finally: 72 del filtered_tb File ~\AppData\Roaming\Python\Python311\site-packages\tensorflow\python\eager\execute.py:53, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name) 51 try: 52 ctx.ensure_initialized() ---> 53 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, 54 inputs, attrs, num_outputs) 55 except core._NotOkStatusException as e: 56 if name is not None: UnimplementedError: Graph execution error: Detected at node 'model_1/conv2d_14/Conv2D' defined at (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel_launcher.py", line 17, in <module> app.launch_new_instance() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\traitlets\config\application.py", line 992, in launch_instance app.start() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\kernelapp.py", line 711, in start self.io_loop.start() File "C:\Users\gji19\AppData\Roaming\Python\Python311\site-packages\tornado\platform\asyncio.py", line 195, in start self.asyncio_loop.run_forever() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\asyncio\base_events.py", line 607, in run_forever self._run_once() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\asyncio\base_events.py", line 1922, in _run_once handle._run() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\asyncio\events.py", line 80, in _run self._context.run(self._callback, *self._args) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 510, in dispatch_queue await self.process_one() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 499, in process_one await dispatch(*args) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 406, in dispatch_shell await result File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\kernelbase.py", line 729, in execute_request reply_content = await reply_content File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\ipkernel.py", line 411, in do_execute res = shell.run_cell( File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\ipykernel\zmqshell.py", line 531, in run_cell return super().run_cell(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3006, in run_cell result = self._run_cell( File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3061, in _run_cell result = runner(coro) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner coro.send(None) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3266, in run_cell_async has_raised = await self.run_ast_nodes(code_ast.body, cell_name, File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3445, in run_ast_nodes if await self.run_code(code, result, async_=asy): File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 3505, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "C:\Users\gji19\AppData\Local\Temp\ipykernel_22004\3374343633.py", line 1, in <module> get_ipython().run_line_magic('run', 'demoDSen2.py') File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 2414, in run_line_magic result = fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\magics\execution.py", line 834, in run run() File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\magics\execution.py", line 819, in run runner(filename, prog_ns, prog_ns, File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\pylabtools.py", line 213, in mpl_execfile safe_execfile(fname,*where,**kw) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\core\interactiveshell.py", line 2863, in safe_execfile py3compat.execfile( File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\IPython\utils\py3compat.py", line 55, in execfile exec(compiler(f.read(), fname, "exec"), glob, loc) File "C:\Users\gji19\OneDrive - University of Canterbury\DSen2\testing\demoDSen2.py", line 47, in <module> SR20 = DSen2_20(im10, im20) File "C:\Users\gji19\OneDrive - University of Canterbury\DSen2\testing\supres.py", line 27, in DSen2_20 prediction = _predict(test, input_shape, deep=deep) File "C:\Users\gji19\OneDrive - University of Canterbury\DSen2\testing\supres.py", line 65, in _predict prediction = model.predict(test, verbose=1) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\training.py", line 2554, in predict tmp_batch_outputs = self.predict_function(iterator) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\training.py", line 2341, in predict_function return step_function(self, iterator) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\training.py", line 2327, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\training.py", line 2315, in run_step outputs = model.predict_step(data) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\training.py", line 2283, in predict_step return self(x, training=False) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\training.py", line 569, in __call__ return super().__call__(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\base_layer.py", line 1150, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 96, in error_handler return fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\functional.py", line 512, in call return self._run_internal_graph(inputs, training=training, mask=mask) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\functional.py", line 669, in _run_internal_graph outputs = node.layer(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\engine\base_layer.py", line 1150, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\utils\traceback_utils.py", line 96, in error_handler return fn(*args, **kwargs) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\layers\convolutional\base_conv.py", line 290, in call outputs = self.convolution_op(inputs, self.kernel) File "C:\Users\gji19\AppData\Local\anaconda3\Lib\site-packages\keras\src\layers\convolutional\base_conv.py", line 262, in convolution_op return tf.nn.convolution( Node: 'model_1/conv2d_14/Conv2D' The Conv2D op currently only supports the NHWC tensor format on the CPU. The op was given the format: NCHW [[{{node model_1/conv2d_14/Conv2D}}]] [Op:__inference_predict_function_1337]
The text was updated successfully, but these errors were encountered:
Currenly having the same issue. Maybe you solved it?
Sorry, something went wrong.
No branches or pull requests
I run the following line
%run demoDSen2.py
but got the following error as below. Please help.The text was updated successfully, but these errors were encountered: