Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data model weights Mar 31, 2018
matlab_demo fix typo Oct 8, 2018
models model weights Mar 31, 2018
testing fix upperleft coordinates in output Feb 7, 2019
training
utils fix non-squre input images / fixes #6 Feb 17, 2019
LICENSE
README.md updated description Apr 16, 2018
S2_tiles_testing.txt model weights Mar 31, 2018
S2_tiles_training.txt model weights Mar 31, 2018

README.md

DSen2

Deep Sentinel-2

Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network

Requirements

  • tensorflow-gpu (or tensorflow)
  • keras
  • nupmy
  • scikit-image
  • argparse
  • imageio
  • matplotlib (optional)
  • GDAL >= 2.2 (optional)

Training

See the detailed description in the training directory. Use the --resume option with your application related Sentinel-2 tiles to refine the provided network weights.

Using the Trained Network

The network can be used directly on downloaded Sentinel-2 tiles. See details in the s2_tiles_supres.py file. An example follows:

 python s2_tiles_supres.py /path/to/S2A_MSIL1C_20161230T074322_N0204_R092_T37NCE_20161230T075722.SAFE/MTD_MSIL1C.xml /path/to/output_file.tif --roi_x_y "100,100,2000,2000"

Point to the .xml file of the uzipped S2 tile. You must also provide an output file -- consider using a .tif extension that is easily read by QGIS. If you want to also copy the high resolution (10m bands) you can do so, with the option --copy_original_bands. To also predict the lowest resolution bands (60m) use the --run_60 option.

MATLAB Demo

The demo is also ported to MATLAB: demoDSen2.m. However, MATLAB 2017b or newer is needed to run. It utilizes the Neural Network toolbox that can be accelerated with the Parallel Computing Toolbox.

Used Sentinel-2 tiles

The Sentinel-2 tiles used for training and testing are listed in:

  • S2_tiles_training.txt
  • S2_tiles_testing.txt

They can be downloaded from the Copernicus Open Access Hub.