Skip to content

Commit

Permalink
Merge branch 'main' of github.com:lanl/pyBASS
Browse files Browse the repository at this point in the history
  • Loading branch information
dfrancom committed May 8, 2024
2 parents 85325a9 + 6684f4c commit c62cc69
Show file tree
Hide file tree
Showing 3 changed files with 78 additions and 15 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/Build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-22.04, macos-latest, windows-latest]
python-version: [3.7, 3.8, 3.9, '3.10']
python-version: [3.9, '3.10', 3.11]

steps:
- uses: actions/checkout@v3
Expand Down
56 changes: 42 additions & 14 deletions pyBASS/sobol.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from scipy import stats
import re
import time
import math

class sobolBasis:
"""
Expand Down Expand Up @@ -206,6 +207,14 @@ def decomp(self, int_order, prior=None, mcmc_use=None, nind=None, ncores=1):
sob_comb_var = sob_comb_var[use,:]
sob_comb = sob_comb[use,:]

# Calculate "Total Sobol' Index"
sob_comb_tot = np.zeros((p,nxfunc))
idx = 0
for i in range(int_order):
for j in range(len(u_list[i])):
sob_comb_tot[u_list[i][j],:] += sob_comb_var[idx]
idx += 1

names_ind1 = []
for i in range(len(u_list)):
for j in range(len(u_list[i])):
Expand All @@ -226,36 +235,36 @@ def decomp(self, int_order, prior=None, mcmc_use=None, nind=None, ncores=1):

self.S = sob_comb
self.S_var = sob_comb_var
self.T_var = sob_comb_tot
self.Var_tot = V_tot
self.names_ind = names_ind2
self.xx = np.linspace(0,1,nxfunc)

return

def plot(self, text=False, labels=[], col='Paired', time=[]):
def plot(self, int_order=1, total_sobol=True, text=False, labels=[], col='Paired', time=[]):
if len(time) == 0:
time = self.xx

p = np.shape(self.mod.xx)[1]
ncomb = np.sum([math.comb(p, k) for k in range(1,int_order+1)])

if len(labels) == 0:
labels1 = self.names_ind
else:
labels1 = self.names_ind
for i in range(len(labels)):
labels1[i] = labels[float(labels1[i])]
labels = self.names_ind[:ncomb] + [self.names_ind[-1]]

map = cm.Paired(np.linspace(0,1,12))
map = np.resize(map, (len(labels1),4))
map = np.resize(map, (len(labels),4))
rgb = np.ones((map.shape[0]+1,4))
rgb[0:map.shape[0],:] = map
rgb[-1,0:3] = np.array([153,153,153])/255

ord = time.argsort()
x_mean = self.S
x_mean = np.vstack([self.S[:ncomb, :],
np.sum(self.S[ncomb:, :],axis=0,keepdims=True)])
sens = np.cumsum(x_mean,axis=0).T
fig, axs = plt.subplots(1, 2)
idx = np.where(np.sum(sens,axis=0)/sens.shape[0]>=.99999)[0][0]
fig, axs = plt.subplots(1, 2+total_sobol)
cnt = 0
for i in range(idx+1):
for i in range(ncomb+1):
x2 = np.concatenate((time[ord], np.flip(time[ord])))
if i == 0:
inBetween = np.concatenate((np.zeros(time[ord].shape[0]), np.flip(sens[ord,i])))
Expand All @@ -282,10 +291,11 @@ def plot(self, text=False, labels=[], col='Paired', time=[]):
cs_diff2 = cs_diff/2
plt.text(time[lab_x], cs[ind] + cs_diff2[ind1], self.names_ind)

x_mean_var = self.S_var
x_mean_var = np.vstack([self.S_var[:ncomb, :],
np.sum(self.S_var[ncomb:, :],axis=0,keepdims=True)])
sens_var = np.cumsum(x_mean_var,axis=0).T
cnt = 0
for i in range(idx+1):
for i in range(ncomb+1):
x2 = np.concatenate((time[ord], np.flip(time[ord])))
if i == 0:
inBetween = np.concatenate((np.zeros(time[ord].shape[0]), np.flip(sens_var[ord,i])))
Expand All @@ -300,7 +310,25 @@ def plot(self, text=False, labels=[], col='Paired', time=[]):
axs[1].set(xlabel="x", ylabel="variance", title='Variance Decomposition', xlim=[time.min(), time.max()], ylim=[0, inBetween.max()+3])

if not text:
plt.legend(labels1[0:(idx+1)],loc='upper left')
axs[1].legend(labels,loc='upper left')

if total_sobol:
x_mean_tot = self.T_var
sens_tot = np.cumsum(x_mean_tot,axis=0).T
cnt = 0
for i in range(p):
x2 = np.concatenate((time[ord], np.flip(time[ord])))
if i == 0:
inBetween = np.concatenate((np.zeros(time[ord].shape[0]), np.flip(sens_tot[ord,i])))
else:
inBetween = np.concatenate((sens_tot[ord,i-1], np.flip(sens_tot[ord,i])))
if (cnt % rgb.shape[0]+1) == 0:
cnt = 0

axs[2].fill(x2, inBetween, color=rgb[cnt,:])
cnt += 1

axs[2].set(xlabel="x", ylabel="total variance", title="Total Sobol'", xlim=[time.min(), time.max()], ylim=[0, inBetween.max()+3])

fig.tight_layout()
return
Expand Down
35 changes: 35 additions & 0 deletions tests/test_sobolBasis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import pyBASS as pb
import numpy as np

# Get dataset
# Friedman function with functional response
def f2(x):
out = (10. * np.sin(np.pi * np.linspace(0, 1, 50) * x[1]) + 20. * (x[2] - .5) ** 2 + 10 * x[3] + 5. * x[4]) * x[5]
return out

np.random.seed(0)
tt = np.linspace(0, 1, 50) # functional variable grid
n = 500 # sample size
p = 9 # number of predictors other (only 4 are used)
x = np.random.rand(n, p) # training inputs
xx = np.random.rand(1000, p)
e = np.random.normal(size=[n, len(tt)]) * .1 # noise
y = np.apply_along_axis(f2, 1, x) + e # training response
ftest = np.apply_along_axis(f2, 1, xx)

# fit BASS model with RJMCMC
mod = pb.bassPCA(x, y)

sob = pb.sobolBasis(mod)
sob.decomp(int_order=3)
sob.plot()

# Check that T_var is computed correctly
S_var = sob.S_var
T_var = sob.T_var
np.all(T_var[0] == np.sum([S_var[i] for i in range(len(S_var)) if str(1) in sob.names_ind[i]], axis=0))
np.all(T_var[1] == np.sum([S_var[i] for i in range(len(S_var)) if str(2) in sob.names_ind[i]], axis=0))
np.all(T_var[2] == np.sum([S_var[i] for i in range(len(S_var)) if str(3) in sob.names_ind[i]], axis=0))
np.all(T_var[3] == np.sum([S_var[i] for i in range(len(S_var)) if str(4) in sob.names_ind[i]], axis=0))
### etc
np.all(T_var[8] == np.sum([S_var[i] for i in range(len(S_var)) if str(9) in sob.names_ind[i]], axis=0))

0 comments on commit c62cc69

Please sign in to comment.