Skip to content

Implementation of the paper "FASTDLO: Fast Deformable Linear Objects Instance Segmentation", Robotics and Automation Letters & IROS 2022

Notifications You must be signed in to change notification settings

lar-unibo/fastdlo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FASTDLO: Fast Deformable Linear Objects Instance Segmentation

📃 IEEE Xplore 📃

Abstract

In this paper, an approach for fast and accurate segmentation of Deformable Linear Objects (DLOs) named FASTDLO is presented. A deep convolutional neural network is employed for background segmentation, generating a binary mask that isolates DLOs in the image. Thereafter, the obtained mask is processed with a skeletonization algorithm and the intersections between different DLOs are solved with a similarity-based network. Apart from the usual pixel-wise color-mapped image, FASTDLO also describes each DLO instance with a sequence of 2D coordinates, enabling the possibility of modeling the DLO instances with splines curves, for example. Synthetically generated data are exploited for the training of the data-driven methods, avoiding expensive collection and annotations of real data. FASTDLO is experimentally compared against both a DLO-specific approach and general-purpose deep learning instance segmentation models, achieving better overall performances and a processing rate higher than 20 FPS.

Installation

Main dependencies:

python (3.8)
pytorch (1.4.0)
opencv 
pillow 
scikit-image 
scipy 
shapely 

Installation (from inside the main project directory):

pip install .

Models' weights

Download the weights and place them inside a weights folder.

Usage

import as a standard python package with from fastdlo.core import Pipeline.

Then initialize the class p = Pipeline(checkpoint_siamese_network, checkpoint_segmentation_network)

the inference can be obtained with pred = p.run(source_img) .

Acknowledgements/Fundings

This work was supported by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL - Robotic technologies for the manipulation of complex deformable linear objects - under grant agreement No 870133.

DeepLabV3+ implementation based on https://github.com/VainF/DeepLabV3Plus-Pytorch

Citation

If you use FASTDLO or this code base in your work, please cite

@ARTICLE{9830852,
  author={Caporali, Alessio and Galassi, Kevin and Zanella, Riccardo and Palli, Gianluca},
  journal={IEEE Robotics and Automation Letters}, 
  title={FASTDLO: Fast Deformable Linear Objects Instance Segmentation}, 
  year={2022},
  volume={7},
  number={4},
  pages={9075-9082},
  doi={10.1109/LRA.2022.3189791}}

About

Implementation of the paper "FASTDLO: Fast Deformable Linear Objects Instance Segmentation", Robotics and Automation Letters & IROS 2022

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages