Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[HF][streaming][4/n] Image2Text (no streaming, but lots of fixing) #855

Merged
merged 4 commits into from
Jan 10, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,11 +1,21 @@
import json
from typing import Any, Dict, Optional, List, TYPE_CHECKING
from transformers import (
Pipeline,
pipeline,
)

from aiconfig import ParameterizedModelParser, InferenceOptions
from aiconfig.callback import CallbackEvent
import torch
from aiconfig.schema import Prompt, Output, ExecuteResult, Attachment

from transformers import pipeline, Pipeline

from aiconfig.schema import (
Attachment,
ExecuteResult,
Output,
OutputDataWithValue,
Prompt,
)

# Circular Dependency Type Hints
if TYPE_CHECKING:
from aiconfig import AIConfigRuntime

Expand Down Expand Up @@ -93,10 +103,11 @@ async def deserialize(
await aiconfig.callback_manager.run_callbacks(CallbackEvent("on_deserialize_start", __name__, {"prompt": prompt, "params": params}))

# Build Completion data
completion_params = self.get_model_settings(prompt, aiconfig)
model_settings = self.get_model_settings(prompt, aiconfig)
completion_params = refine_completion_params(model_settings)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good catch!


#Add image inputs
inputs = validate_and_retrieve_image_from_attachments(prompt)

completion_params["inputs"] = inputs

await aiconfig.callback_manager.run_callbacks(CallbackEvent("on_deserialize_complete", __name__, {"output": completion_params}))
Expand All @@ -110,24 +121,93 @@ async def run_inference(self, prompt: Prompt, aiconfig: "AIConfigRuntime", optio
{"prompt": prompt, "options": options, "parameters": parameters},
)
)
model_name = aiconfig.get_model_name(prompt)

self.pipelines[model_name] = pipeline(task="image-to-text", model=model_name)

captioner = self.pipelines[model_name]
completion_data = await self.deserialize(prompt, aiconfig, parameters)
inputs = completion_data.pop("inputs")
model = completion_data.pop("model")
response = captioner(inputs, **completion_data)

output = ExecuteResult(output_type="execute_result", data=response, metadata={})
model_name: str | None = aiconfig.get_model_name(prompt)
if isinstance(model_name, str) and model_name not in self.pipelines:
self.pipelines[model_name] = pipeline(task="image-to-text", model=model_name)
captioner = self.pipelines[model_name]

outputs: List[Output] = []
response: List[Any] = captioner(inputs, **completion_data)
for count, result in enumerate(response):
output: Output = construct_regular_output(result, count)
outputs.append(output)

prompt.outputs = [output]
await aiconfig.callback_manager.run_callbacks(CallbackEvent("on_run_complete", __name__, {"result": prompt.outputs}))
prompt.outputs = outputs
print(f"{prompt.outputs=}")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove print?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fixed in #862

await aiconfig.callback_manager.run_callbacks(
CallbackEvent(
"on_run_complete",
__name__,
{"result": prompt.outputs},
)
)
return prompt.outputs

def get_output_text(self, response: dict[str, Any]) -> str:
raise NotImplementedError("get_output_text is not implemented for HuggingFaceImage2TextTransformer")
def get_output_text(
self,
prompt: Prompt,
aiconfig: "AIConfigRuntime",
output: Optional[Output] = None,
) -> str:
if output is None:
output = aiconfig.get_latest_output(prompt)

if output is None:
return ""

# TODO (rossdanlm): Handle multiple outputs in list
# https://github.com/lastmile-ai/aiconfig/issues/467
if output.output_type == "execute_result":
output_data = output.data
if isinstance(output_data, str):
return output_data
if isinstance(output_data, OutputDataWithValue):
if isinstance(output_data.value, str):
return output_data.value
# HuggingFace Text summarization does not support function
# calls so shouldn't get here, but just being safe
Comment on lines +171 to +172
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: Hugging Face image-to-text...

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Fixed in #862

return json.dumps(output_data.value, indent=2)
return ""


def refine_completion_params(model_settings: Dict[str, Any]) -> Dict[str, Any]:
"""
Refines the completion params for the HF image to text api. Removes any unsupported params.
The supported keys were found by looking at the HF ImageToTextPipeline.__call__ method
"""
supported_keys = {
"max_new_tokens",
"timeout",
}

completion_data = {}
for key in model_settings:
if key.lower() in supported_keys:
completion_data[key.lower()] = model_settings[key]

return completion_data

# Helper methods
def construct_regular_output(result: Dict[str, str], execution_count: int) -> Output:
"""
Construct regular output per response result, without streaming enabled
"""
output = ExecuteResult(
**{
"output_type": "execute_result",
# For some reason result is always in list format we haven't found
# a way of being able to return multiple sequences from the image
# to text pipeline
"data": result[0]["generated_text"],
"execution_count": execution_count,
"metadata": {},
}
)
return output


def validate_attachment_type_is_image(attachment: Attachment):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ def __init__(self):
config.register_model_parser(parser)
"""
super().__init__()
self.generators : dict[str, Pipeline]= {}
self.generators: dict[str, Pipeline]= {}

def id(self) -> str:
"""
Expand Down Expand Up @@ -217,14 +217,14 @@ async def deserialize(
# Build Completion data
model_settings = self.get_model_settings(prompt, aiconfig)
completion_data = refine_chat_completion_params(model_settings)

#Add resolved prompt
resolved_prompt = resolve_prompt(prompt, params, aiconfig)
completion_data["prompt"] = resolved_prompt
return completion_data

async def run_inference(
self, prompt: Prompt, aiconfig : "AIConfigRuntime", options : InferenceOptions, parameters: Dict[str, Any]
self, prompt: Prompt, aiconfig: "AIConfigRuntime", options: InferenceOptions, parameters: Dict[str, Any]
) -> List[Output]:
"""
Invoked to run a prompt in the .aiconfig. This method should perform
Expand All @@ -239,8 +239,8 @@ async def run_inference(
"""
completion_data = await self.deserialize(prompt, aiconfig, options, parameters)
completion_data["text_inputs"] = completion_data.pop("prompt", None)
model_name : str = aiconfig.get_model_name(prompt)

model_name: str | None = aiconfig.get_model_name(prompt)
if isinstance(model_name, str) and model_name not in self.generators:
self.generators[model_name] = pipeline('text-generation', model=model_name)
generator = self.generators[model_name]
Expand All @@ -255,10 +255,10 @@ async def run_inference(
streamer = TextIteratorStreamer(tokenizer)
completion_data["streamer"] = streamer

outputs : List[Output] = []
outputs: List[Output] = []
output = None
if not should_stream:
response : List[Any] = generator(**completion_data)
response: List[Any] = generator(**completion_data)
for count, result in enumerate(response):
output = construct_regular_output(result, count)
outputs.append(output)
Expand All @@ -267,7 +267,7 @@ async def run_inference(
raise ValueError("Sorry, TextIteratorStreamer does not support multiple return sequences, please set `num_return_sequences` to 1")
if not streamer:
raise ValueError("Stream option is selected but streamer is not initialized")

# For streaming, cannot call `generator` directly otherwise response will be blocking
thread = threading.Thread(target=generator, kwargs=completion_data)
thread.start()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -258,12 +258,10 @@ async def run_inference(self, prompt: Prompt, aiconfig: "AIConfigRuntime", optio
streamer = TextIteratorStreamer(tokenizer)
completion_data["streamer"] = streamer

outputs: List[Output] = []
output = None

def _summarize():
return summarizer(inputs, **completion_data)

outputs: List[Output] = []
if not should_stream:
response: List[Any] = _summarize()
for count, result in enumerate(response):
Expand Down