Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 007d660

Browse files
committed
feat(analysis/inner_product_space/pi_L2): map_isometry_euclidean_of_orthonormal (#11907)
Add a lemma giving the result of `isometry_euclidean_of_orthonormal` when applied to an orthonormal basis obtained from another orthonormal basis with `basis.map`.
1 parent 923923f commit 007d660

File tree

1 file changed

+11
-0
lines changed

1 file changed

+11
-0
lines changed

src/analysis/inner_product_space/pi_L2.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,7 @@ noncomputable theory
3838

3939
variables {ι : Type*}
4040
variables {𝕜 : Type*} [is_R_or_C 𝕜] {E : Type*} [inner_product_space 𝕜 E]
41+
variables {E' : Type*} [inner_product_space 𝕜 E']
4142
local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y
4243

4344
/-
@@ -176,6 +177,16 @@ rfl
176177
((v.isometry_euclidean_of_orthonormal hv).symm : euclidean_space 𝕜 ι → E) = v.equiv_fun.symm :=
177178
rfl
178179

180+
/-- If `f : E ≃ₗᵢ[𝕜] E'` is a linear isometry of inner product spaces then an orthonormal basis `v`
181+
of `E` determines a linear isometry `e : E' ≃ₗᵢ[𝕜] euclidean_space 𝕜 ι`. This result states that
182+
`e` may be obtained either by transporting `v` to `E'` or by composing with the linear isometry
183+
`E ≃ₗᵢ[𝕜] euclidean_space 𝕜 ι` provided by `v`. -/
184+
@[simp] lemma basis.map_isometry_euclidean_of_orthonormal (v : basis ι 𝕜 E) (hv : orthonormal 𝕜 v)
185+
(f : E ≃ₗᵢ[𝕜] E') :
186+
(v.map f.to_linear_equiv).isometry_euclidean_of_orthonormal (hv.map_linear_isometry_equiv f) =
187+
f.symm.trans (v.isometry_euclidean_of_orthonormal hv) :=
188+
linear_isometry_equiv.to_linear_equiv_injective $ v.map_equiv_fun _
189+
179190
end
180191

181192
/-- `ℂ` is isometric to `ℝ²` with the Euclidean inner product. -/

0 commit comments

Comments
 (0)