@@ -158,7 +158,7 @@ begin
158
158
{ rw [←add_le_add_iff_right (1 : ℝ)], convert b_add_w_le_one h, rw hi, rw zero_add },
159
159
apply zero_le_b h, apply lt_of_lt_of_le (side_subset h $ (cs i').b_mem_side j).2 ,
160
160
simp [hi, zero_le_b h] },
161
- exact h.pairwise_disjoint i' i hi' ⟨hp, h2p⟩
161
+ exact h.pairwise_disjoint hi' ⟨hp, h2p⟩
162
162
end
163
163
164
164
/-- The top of a cube (which is the bottom of the cube shifted up by its width) must be covered by
@@ -176,7 +176,7 @@ begin
176
176
rw [← h.2 , mem_Union] at this , rcases this with ⟨i', hi'⟩,
177
177
rw [mem_Union], use i', refine ⟨_, λ j, hi' j.succ⟩,
178
178
have : i ≠ i', { rintro rfl, apply not_le_of_lt (hi' 0 ).2 , rw [hp0], refl },
179
- have := h.1 i i' this , rw [on_fun, to_set_disjoint, exists_fin_succ] at this ,
179
+ have := h.1 this , rw [on_fun, to_set_disjoint, exists_fin_succ] at this ,
180
180
rcases this with h0|⟨j, hj⟩,
181
181
rw [hp0], symmetry, apply eq_of_Ico_disjoint h0 (by simp [hw]) _,
182
182
convert hi' 0 , rw [hp0], refl,
@@ -395,9 +395,9 @@ begin
395
395
intro j₂, by_cases hj₂ : j₂ = j,
396
396
{ simpa [side_tail, p', hj'.symm, hj₂] using hi''.2 j },
397
397
{ simpa [hj₂] using hi'.2 j₂ } },
398
- apply not_disjoint_iff.mpr ⟨(cs i).b, (cs i).b_mem_to_set, this ⟩ (h.1 i i' i_i') },
398
+ apply not_disjoint_iff.mpr ⟨(cs i).b, (cs i).b_mem_to_set, this ⟩ (h.1 i_i') },
399
399
have i_i'' : i ≠ i'', { intro h, induction h, simpa [hx'.2 ] using hi''.2 j' },
400
- apply not.elim _ (h.1 i' i'' i' _i''),
400
+ apply not.elim _ (h.1 i'_i''),
401
401
simp only [on_fun, to_set_disjoint, not_disjoint_iff, forall_fin_succ, not_exists, comp_app],
402
402
refine ⟨⟨c.b 0 , bottom_mem_side h2i', bottom_mem_side h2i''⟩, _⟩,
403
403
intro j₂,
0 commit comments