Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 01adfd6

Browse files
committed
chore(analysis/special_functions): add some @[simp] attrs (#9423)
Add `@[simp]` attrs to `real.sin_add_pi` and similar lemmas.
1 parent 6108616 commit 01adfd6

File tree

1 file changed

+32
-32
lines changed
  • src/analysis/special_functions/trigonometric

1 file changed

+32
-32
lines changed

src/analysis/special_functions/trigonometric/basic.lean

Lines changed: 32 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -1026,46 +1026,46 @@ by simp [sin_add]
10261026
lemma sin_periodic : function.periodic sin (2 * π) :=
10271027
sin_antiperiodic.periodic
10281028

1029-
lemma sin_add_pi (x : ℝ) : sin (x + π) = -sin x :=
1029+
@[simp] lemma sin_add_pi (x : ℝ) : sin (x + π) = -sin x :=
10301030
sin_antiperiodic x
10311031

1032-
lemma sin_add_two_pi (x : ℝ) : sin (x + 2 * π) = sin x :=
1032+
@[simp] lemma sin_add_two_pi (x : ℝ) : sin (x + 2 * π) = sin x :=
10331033
sin_periodic x
10341034

1035-
lemma sin_sub_pi (x : ℝ) : sin (x - π) = -sin x :=
1035+
@[simp] lemma sin_sub_pi (x : ℝ) : sin (x - π) = -sin x :=
10361036
sin_antiperiodic.sub_eq x
10371037

1038-
lemma sin_sub_two_pi (x : ℝ) : sin (x - 2 * π) = sin x :=
1038+
@[simp] lemma sin_sub_two_pi (x : ℝ) : sin (x - 2 * π) = sin x :=
10391039
sin_periodic.sub_eq x
10401040

1041-
lemma sin_pi_sub (x : ℝ) : sin (π - x) = sin x :=
1041+
@[simp] lemma sin_pi_sub (x : ℝ) : sin (π - x) = sin x :=
10421042
neg_neg (sin x) ▸ sin_neg x ▸ sin_antiperiodic.sub_eq'
10431043

1044-
lemma sin_two_pi_sub (x : ℝ) : sin (2 * π - x) = -sin x :=
1044+
@[simp] lemma sin_two_pi_sub (x : ℝ) : sin (2 * π - x) = -sin x :=
10451045
sin_neg x ▸ sin_periodic.sub_eq'
10461046

1047-
lemma sin_nat_mul_pi (n : ℕ) : sin (n * π) = 0 :=
1047+
@[simp] lemma sin_nat_mul_pi (n : ℕ) : sin (n * π) = 0 :=
10481048
sin_antiperiodic.nat_mul_eq_of_eq_zero sin_zero n
10491049

1050-
lemma sin_int_mul_pi (n : ℤ) : sin (n * π) = 0 :=
1050+
@[simp] lemma sin_int_mul_pi (n : ℤ) : sin (n * π) = 0 :=
10511051
sin_antiperiodic.int_mul_eq_of_eq_zero sin_zero n
10521052

1053-
lemma sin_add_nat_mul_two_pi (x : ℝ) (n : ℕ) : sin (x + n * (2 * π)) = sin x :=
1053+
@[simp] lemma sin_add_nat_mul_two_pi (x : ℝ) (n : ℕ) : sin (x + n * (2 * π)) = sin x :=
10541054
sin_periodic.nat_mul n x
10551055

1056-
lemma sin_add_int_mul_two_pi (x : ℝ) (n : ℤ) : sin (x + n * (2 * π)) = sin x :=
1056+
@[simp] lemma sin_add_int_mul_two_pi (x : ℝ) (n : ℤ) : sin (x + n * (2 * π)) = sin x :=
10571057
sin_periodic.int_mul n x
10581058

1059-
lemma sin_sub_nat_mul_two_pi (x : ℝ) (n : ℕ) : sin (x - n * (2 * π)) = sin x :=
1059+
@[simp] lemma sin_sub_nat_mul_two_pi (x : ℝ) (n : ℕ) : sin (x - n * (2 * π)) = sin x :=
10601060
sin_periodic.sub_nat_mul_eq n
10611061

1062-
lemma sin_sub_int_mul_two_pi (x : ℝ) (n : ℤ) : sin (x - n * (2 * π)) = sin x :=
1062+
@[simp] lemma sin_sub_int_mul_two_pi (x : ℝ) (n : ℤ) : sin (x - n * (2 * π)) = sin x :=
10631063
sin_periodic.sub_int_mul_eq n
10641064

1065-
lemma sin_nat_mul_two_pi_sub (x : ℝ) (n : ℕ) : sin (n * (2 * π) - x) = -sin x :=
1065+
@[simp] lemma sin_nat_mul_two_pi_sub (x : ℝ) (n : ℕ) : sin (n * (2 * π) - x) = -sin x :=
10661066
sin_neg x ▸ sin_periodic.nat_mul_sub_eq n
10671067

1068-
lemma sin_int_mul_two_pi_sub (x : ℝ) (n : ℤ) : sin (n * (2 * π) - x) = -sin x :=
1068+
@[simp] lemma sin_int_mul_two_pi_sub (x : ℝ) (n : ℤ) : sin (n * (2 * π) - x) = -sin x :=
10691069
sin_neg x ▸ sin_periodic.int_mul_sub_eq n
10701070

10711071
lemma cos_antiperiodic : function.antiperiodic cos π :=
@@ -1074,58 +1074,58 @@ by simp [cos_add]
10741074
lemma cos_periodic : function.periodic cos (2 * π) :=
10751075
cos_antiperiodic.periodic
10761076

1077-
lemma cos_add_pi (x : ℝ) : cos (x + π) = -cos x :=
1077+
@[simp] lemma cos_add_pi (x : ℝ) : cos (x + π) = -cos x :=
10781078
cos_antiperiodic x
10791079

1080-
lemma cos_add_two_pi (x : ℝ) : cos (x + 2 * π) = cos x :=
1080+
@[simp] lemma cos_add_two_pi (x : ℝ) : cos (x + 2 * π) = cos x :=
10811081
cos_periodic x
10821082

1083-
lemma cos_sub_pi (x : ℝ) : cos (x - π) = -cos x :=
1083+
@[simp] lemma cos_sub_pi (x : ℝ) : cos (x - π) = -cos x :=
10841084
cos_antiperiodic.sub_eq x
10851085

1086-
lemma cos_sub_two_pi (x : ℝ) : cos (x - 2 * π) = cos x :=
1086+
@[simp] lemma cos_sub_two_pi (x : ℝ) : cos (x - 2 * π) = cos x :=
10871087
cos_periodic.sub_eq x
10881088

1089-
lemma cos_pi_sub (x : ℝ) : cos (π - x) = -cos x :=
1089+
@[simp] lemma cos_pi_sub (x : ℝ) : cos (π - x) = -cos x :=
10901090
cos_neg x ▸ cos_antiperiodic.sub_eq'
10911091

1092-
lemma cos_two_pi_sub (x : ℝ) : cos (2 * π - x) = cos x :=
1092+
@[simp] lemma cos_two_pi_sub (x : ℝ) : cos (2 * π - x) = cos x :=
10931093
cos_neg x ▸ cos_periodic.sub_eq'
10941094

1095-
lemma cos_nat_mul_two_pi (n : ℕ) : cos (n * (2 * π)) = 1 :=
1095+
@[simp] lemma cos_nat_mul_two_pi (n : ℕ) : cos (n * (2 * π)) = 1 :=
10961096
(cos_periodic.nat_mul_eq n).trans cos_zero
10971097

1098-
lemma cos_int_mul_two_pi (n : ℤ) : cos (n * (2 * π)) = 1 :=
1098+
@[simp] lemma cos_int_mul_two_pi (n : ℤ) : cos (n * (2 * π)) = 1 :=
10991099
(cos_periodic.int_mul_eq n).trans cos_zero
11001100

1101-
lemma cos_add_nat_mul_two_pi (x : ℝ) (n : ℕ) : cos (x + n * (2 * π)) = cos x :=
1101+
@[simp] lemma cos_add_nat_mul_two_pi (x : ℝ) (n : ℕ) : cos (x + n * (2 * π)) = cos x :=
11021102
cos_periodic.nat_mul n x
11031103

1104-
lemma cos_add_int_mul_two_pi (x : ℝ) (n : ℤ) : cos (x + n * (2 * π)) = cos x :=
1104+
@[simp] lemma cos_add_int_mul_two_pi (x : ℝ) (n : ℤ) : cos (x + n * (2 * π)) = cos x :=
11051105
cos_periodic.int_mul n x
11061106

1107-
lemma cos_sub_nat_mul_two_pi (x : ℝ) (n : ℕ) : cos (x - n * (2 * π)) = cos x :=
1107+
@[simp] lemma cos_sub_nat_mul_two_pi (x : ℝ) (n : ℕ) : cos (x - n * (2 * π)) = cos x :=
11081108
cos_periodic.sub_nat_mul_eq n
11091109

1110-
lemma cos_sub_int_mul_two_pi (x : ℝ) (n : ℤ) : cos (x - n * (2 * π)) = cos x :=
1110+
@[simp] lemma cos_sub_int_mul_two_pi (x : ℝ) (n : ℤ) : cos (x - n * (2 * π)) = cos x :=
11111111
cos_periodic.sub_int_mul_eq n
11121112

1113-
lemma cos_nat_mul_two_pi_sub (x : ℝ) (n : ℕ) : cos (n * (2 * π) - x) = cos x :=
1113+
@[simp] lemma cos_nat_mul_two_pi_sub (x : ℝ) (n : ℕ) : cos (n * (2 * π) - x) = cos x :=
11141114
cos_neg x ▸ cos_periodic.nat_mul_sub_eq n
11151115

1116-
lemma cos_int_mul_two_pi_sub (x : ℝ) (n : ℤ) : cos (n * (2 * π) - x) = cos x :=
1116+
@[simp] lemma cos_int_mul_two_pi_sub (x : ℝ) (n : ℤ) : cos (n * (2 * π) - x) = cos x :=
11171117
cos_neg x ▸ cos_periodic.int_mul_sub_eq n
11181118

1119-
lemma cos_nat_mul_two_pi_add_pi (n : ℕ) : cos (n * (2 * π) + π) = -1 :=
1119+
@[simp] lemma cos_nat_mul_two_pi_add_pi (n : ℕ) : cos (n * (2 * π) + π) = -1 :=
11201120
by simpa only [cos_zero] using (cos_periodic.nat_mul n).add_antiperiod_eq cos_antiperiodic
11211121

1122-
lemma cos_int_mul_two_pi_add_pi (n : ℤ) : cos (n * (2 * π) + π) = -1 :=
1122+
@[simp] lemma cos_int_mul_two_pi_add_pi (n : ℤ) : cos (n * (2 * π) + π) = -1 :=
11231123
by simpa only [cos_zero] using (cos_periodic.int_mul n).add_antiperiod_eq cos_antiperiodic
11241124

1125-
lemma cos_nat_mul_two_pi_sub_pi (n : ℕ) : cos (n * (2 * π) - π) = -1 :=
1125+
@[simp] lemma cos_nat_mul_two_pi_sub_pi (n : ℕ) : cos (n * (2 * π) - π) = -1 :=
11261126
by simpa only [cos_zero] using (cos_periodic.nat_mul n).sub_antiperiod_eq cos_antiperiodic
11271127

1128-
lemma cos_int_mul_two_pi_sub_pi (n : ℤ) : cos (n * (2 * π) - π) = -1 :=
1128+
@[simp] lemma cos_int_mul_two_pi_sub_pi (n : ℤ) : cos (n * (2 * π) - π) = -1 :=
11291129
by simpa only [cos_zero] using (cos_periodic.int_mul n).sub_antiperiod_eq cos_antiperiodic
11301130

11311131
lemma sin_pos_of_pos_of_lt_pi {x : ℝ} (h0x : 0 < x) (hxp : x < π) : 0 < sin x :=

0 commit comments

Comments
 (0)