Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 0271f81

Browse files
committed
feat(order/bounded_order): More disjoint lemmas (#15304)
1 parent 77b8e3c commit 0271f81

File tree

1 file changed

+19
-0
lines changed

1 file changed

+19
-0
lines changed

src/order/bounded_order.lean

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1261,6 +1261,10 @@ lemma disjoint.comm : disjoint a b ↔ disjoint b a := by rw [disjoint, disjoint
12611261
lemma symmetric_disjoint : symmetric (disjoint : α → α → Prop) := disjoint.symm
12621262
lemma disjoint_assoc : disjoint (a ⊓ b) c ↔ disjoint a (b ⊓ c) :=
12631263
by rw [disjoint, disjoint, inf_assoc]
1264+
lemma disjoint_left_comm : disjoint a (b ⊓ c) ↔ disjoint b (a ⊓ c) :=
1265+
by simp_rw [disjoint, inf_left_comm]
1266+
lemma disjoint_right_comm : disjoint (a ⊓ b) c ↔ disjoint (a ⊓ c) b :=
1267+
by simp_rw [disjoint, inf_right_comm]
12641268

12651269
@[simp] lemma disjoint_bot_left : disjoint ⊥ a := inf_le_left
12661270
@[simp] lemma disjoint_bot_right : disjoint a ⊥ := inf_le_right
@@ -1348,6 +1352,10 @@ lemma codisjoint.comm : codisjoint a b ↔ codisjoint b a := by rw [codisjoint,
13481352
lemma symmetric_codisjoint : symmetric (codisjoint : α → α → Prop) := codisjoint.symm
13491353
lemma codisjoint_assoc : codisjoint (a ⊔ b) c ↔ codisjoint a (b ⊔ c) :=
13501354
by rw [codisjoint, codisjoint, sup_assoc]
1355+
lemma codisjoint_left_comm : codisjoint a (b ⊔ c) ↔ codisjoint b (a ⊔ c) :=
1356+
by simp_rw [codisjoint, sup_left_comm]
1357+
lemma codisjoint_right_comm : codisjoint (a ⊔ b) c ↔ codisjoint (a ⊔ c) b :=
1358+
by simp_rw [codisjoint, sup_right_comm]
13511359

13521360
@[simp] lemma codisjoint_top_left : codisjoint ⊤ a := le_sup_left
13531361
@[simp] lemma codisjoint_top_right : codisjoint a ⊤ := le_sup_right
@@ -1438,6 +1446,17 @@ lemma codisjoint.dual [semilattice_sup α] [order_top α] {a b : α} :
14381446
@[simp] lemma codisjoint_of_dual_iff [semilattice_sup α] [order_top α] {a b : αᵒᵈ} :
14391447
codisjoint (of_dual a) (of_dual b) ↔ disjoint a b := iff.rfl
14401448

1449+
section distrib_lattice
1450+
variables [distrib_lattice α] [bounded_order α] {a b c : α}
1451+
1452+
lemma disjoint.le_of_codisjoint (hab : disjoint a b) (hbc : codisjoint b c) : a ≤ c :=
1453+
begin
1454+
rw [←@inf_top_eq _ _ _ a, ←@bot_sup_eq _ _ _ c, ←hab.eq_bot, ←hbc.eq_top, sup_inf_right],
1455+
exact inf_le_inf_right _ le_sup_left,
1456+
end
1457+
1458+
end distrib_lattice
1459+
14411460
section is_compl
14421461

14431462
/-- Two elements `x` and `y` are complements of each other if `x ⊔ y = ⊤` and `x ⊓ y = ⊥`. -/

0 commit comments

Comments
 (0)