@@ -1261,6 +1261,10 @@ lemma disjoint.comm : disjoint a b ↔ disjoint b a := by rw [disjoint, disjoint
1261
1261
lemma symmetric_disjoint : symmetric (disjoint : α → α → Prop ) := disjoint.symm
1262
1262
lemma disjoint_assoc : disjoint (a ⊓ b) c ↔ disjoint a (b ⊓ c) :=
1263
1263
by rw [disjoint, disjoint, inf_assoc]
1264
+ lemma disjoint_left_comm : disjoint a (b ⊓ c) ↔ disjoint b (a ⊓ c) :=
1265
+ by simp_rw [disjoint, inf_left_comm]
1266
+ lemma disjoint_right_comm : disjoint (a ⊓ b) c ↔ disjoint (a ⊓ c) b :=
1267
+ by simp_rw [disjoint, inf_right_comm]
1264
1268
1265
1269
@[simp] lemma disjoint_bot_left : disjoint ⊥ a := inf_le_left
1266
1270
@[simp] lemma disjoint_bot_right : disjoint a ⊥ := inf_le_right
@@ -1348,6 +1352,10 @@ lemma codisjoint.comm : codisjoint a b ↔ codisjoint b a := by rw [codisjoint,
1348
1352
lemma symmetric_codisjoint : symmetric (codisjoint : α → α → Prop ) := codisjoint.symm
1349
1353
lemma codisjoint_assoc : codisjoint (a ⊔ b) c ↔ codisjoint a (b ⊔ c) :=
1350
1354
by rw [codisjoint, codisjoint, sup_assoc]
1355
+ lemma codisjoint_left_comm : codisjoint a (b ⊔ c) ↔ codisjoint b (a ⊔ c) :=
1356
+ by simp_rw [codisjoint, sup_left_comm]
1357
+ lemma codisjoint_right_comm : codisjoint (a ⊔ b) c ↔ codisjoint (a ⊔ c) b :=
1358
+ by simp_rw [codisjoint, sup_right_comm]
1351
1359
1352
1360
@[simp] lemma codisjoint_top_left : codisjoint ⊤ a := le_sup_left
1353
1361
@[simp] lemma codisjoint_top_right : codisjoint a ⊤ := le_sup_right
@@ -1438,6 +1446,17 @@ lemma codisjoint.dual [semilattice_sup α] [order_top α] {a b : α} :
1438
1446
@[simp] lemma codisjoint_of_dual_iff [semilattice_sup α] [order_top α] {a b : αᵒᵈ} :
1439
1447
codisjoint (of_dual a) (of_dual b) ↔ disjoint a b := iff.rfl
1440
1448
1449
+ section distrib_lattice
1450
+ variables [distrib_lattice α] [bounded_order α] {a b c : α}
1451
+
1452
+ lemma disjoint.le_of_codisjoint (hab : disjoint a b) (hbc : codisjoint b c) : a ≤ c :=
1453
+ begin
1454
+ rw [←@inf_top_eq _ _ _ a, ←@bot_sup_eq _ _ _ c, ←hab.eq_bot, ←hbc.eq_top, sup_inf_right],
1455
+ exact inf_le_inf_right _ le_sup_left,
1456
+ end
1457
+
1458
+ end distrib_lattice
1459
+
1441
1460
section is_compl
1442
1461
1443
1462
/-- Two elements `x` and `y` are complements of each other if `x ⊔ y = ⊤` and `x ⊓ y = ⊥`. -/
0 commit comments