@@ -3,7 +3,6 @@ Copyright (c) 2020 Bhavik Mehta. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Bhavik Mehta
5
5
-/
6
- import data.fintype.basic
7
6
import category_theory.limits.limits
8
7
import category_theory.sparse
9
8
@@ -29,6 +28,8 @@ universes v u
29
28
30
29
open category_theory category_theory.limits
31
30
31
+ namespace category_theory.limits
32
+
32
33
variable (J : Type v)
33
34
34
35
/-- A wide pullback shape for any type `J` can be written simply as `option J`. -/
@@ -41,9 +42,6 @@ def wide_pushout_shape := option J
41
42
42
43
namespace wide_pullback_shape
43
44
44
- instance fintype_obj [fintype J] : fintype (wide_pullback_shape J) :=
45
- by { rw wide_pullback_shape, apply_instance }
46
-
47
45
variable {J}
48
46
49
47
/-- The type of arrows for the shape indexing a wide pullback. -/
@@ -69,21 +67,6 @@ instance hom.inhabited : inhabited (hom none none) := ⟨hom.id (none : wide_pul
69
67
70
68
local attribute [tidy] tactic.case_bash
71
69
72
- instance fintype_hom [decidable_eq J] (j j' : wide_pullback_shape J) :
73
- fintype (j ⟶ j') :=
74
- { elems :=
75
- begin
76
- cases j',
77
- { cases j,
78
- { exact {hom.id none} },
79
- { exact {hom.term j} } },
80
- { by_cases some j' = j,
81
- { rw h,
82
- exact {hom.id j} },
83
- { exact ∅ } }
84
- end ,
85
- complete := by tidy }
86
-
87
70
instance subsingleton_hom (j j' : wide_pullback_shape J) : subsingleton (j ⟶ j') :=
88
71
⟨by tidy⟩
89
72
@@ -116,9 +99,6 @@ end wide_pullback_shape
116
99
117
100
namespace wide_pushout_shape
118
101
119
- instance fintype_obj [fintype J] : fintype (wide_pushout_shape J) :=
120
- by { rw wide_pushout_shape, apply_instance }
121
-
122
102
variable {J}
123
103
124
104
/-- The type of arrows for the shape indexing a wide psuhout. -/
@@ -144,21 +124,6 @@ instance hom.inhabited : inhabited (hom none none) := ⟨hom.id (none : wide_pus
144
124
145
125
local attribute [tidy] tactic.case_bash
146
126
147
- instance fintype_hom [decidable_eq J] (j j' : wide_pushout_shape J) :
148
- fintype (j ⟶ j') :=
149
- { elems :=
150
- begin
151
- cases j,
152
- { cases j',
153
- { exact {hom.id none} },
154
- { exact {hom.init j'} } },
155
- { by_cases some j = j',
156
- { rw h,
157
- exact {hom.id j'} },
158
- { exact ∅ } }
159
- end ,
160
- complete := by tidy }
161
-
162
127
instance subsingleton_hom (j j' : wide_pushout_shape J) : subsingleton (j ⟶ j') :=
163
128
⟨by tidy⟩
164
129
@@ -195,20 +160,12 @@ variables (C : Type u) [category.{v} C]
195
160
class has_wide_pullbacks :=
196
161
(has_limits_of_shape : Π (J : Type v), has_limits_of_shape (wide_pullback_shape J) C)
197
162
198
- /-- `has_wide_pullbacks` represents a choice of wide pullback for every finite collection of morphisms -/
199
- class has_finite_wide_pullbacks :=
200
- (has_limits_of_shape : Π (J : Type v) [decidable_eq J] [fintype J], has_limits_of_shape (wide_pullback_shape J) C)
201
-
202
163
attribute [instance] has_wide_pullbacks.has_limits_of_shape
203
- attribute [instance] has_finite_wide_pullbacks.has_limits_of_shape
204
164
205
165
/-- `has_wide_pushouts` represents a choice of wide pushout for every collection of morphisms -/
206
166
class has_wide_pushouts :=
207
167
(has_colimits_of_shape : Π (J : Type v), has_colimits_of_shape (wide_pushout_shape J) C)
208
168
209
- /-- `has_wide_pushouts` represents a choice of wide pushout for every finite collection of morphisms -/
210
- class has_finite_wide_pushouts :=
211
- (has_colimits_of_shape : Π (J : Type v) [decidable_eq J] [fintype J], has_colimits_of_shape (wide_pushout_shape J) C)
212
-
213
169
attribute [instance] has_wide_pushouts.has_colimits_of_shape
214
- attribute [instance] has_finite_wide_pushouts.has_colimits_of_shape
170
+
171
+ end category_theory.limits
0 commit comments