Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 0324935

Browse files
committed
chore(data/equiv/basic): Add trivial simp lemma (#5100)
With this in place, `⇑1 ∘ f` simplifies to `⇑f`
1 parent 0020077 commit 0324935

File tree

1 file changed

+3
-1
lines changed

1 file changed

+3
-1
lines changed

src/data/equiv/basic.lean

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -271,7 +271,7 @@ end
271271
theorem mul_apply {α : Type u} (f g : perm α) (x) : (f * g) x = f (g x) :=
272272
equiv.trans_apply _ _ _
273273

274-
@[simp] theorem one_apply {α : Type u} (x) : (1 : perm α) x = x := rfl
274+
theorem one_apply {α : Type u} (x) : (1 : perm α) x = x := rfl
275275

276276
@[simp] lemma inv_apply_self {α : Type u} (f : perm α) (x) :
277277
f⁻¹ (f x) = x := equiv.symm_apply_apply _ _
@@ -287,6 +287,8 @@ lemma inv_def {α : Type u} (f : perm α) : f⁻¹ = f.symm := rfl
287287

288288
@[simp] lemma coe_mul {α : Type u} (f g : perm α) : ⇑(f * g) = f ∘ g := rfl
289289

290+
@[simp] lemma coe_one {α : Type u} : ⇑(1 : perm α) = id := rfl
291+
290292
end perm
291293

292294
/-- If `α` is an empty type, then it is equivalent to the `empty` type. -/

0 commit comments

Comments
 (0)